Back to Search Start Over

Invarianty jetových grup a aplikace v mechanice kontinua

Authors :
Kureš, Miroslav
Doupovec, Miroslav
Buriánek, Martin
Kureš, Miroslav
Doupovec, Miroslav
Buriánek, Martin

Abstract

Tato práce se zabývá jetovými grupami a jejich maticovými reprezentacemi. V úvodní části práce se věnujeme reprezentacím grup, akcím grup na množinách a invariantům akcí. V další části jsou objasněny pojmy hladká varieta, Lieova grupa a Lieova algebra. Následuje vysvětlení pojmu jet a zavedení jetové grupy jako speciálního případu Lieovy grupy. Nejprve jsou popsány grupy $G_1^r$ a $G_n^1$, poté grupa $G_n^2$ a její podgrupy. U popsaných jetových grup jsou navrženy jejich reprezentace. V závěru práce je nástíněna možnost aplikací jetových grup v mechanice kontinua. Práce je doplněna algoritmizací vybraných problému v softwaru Wolfram Mathematica.<br />This thesis is focused on jet groups and their matrix representations. The opening section deals with group representations, group actions on sets and invariants of actions. Another section explains terms such as smooth manifolds, Lie group and Lie algebra. The following part clarifies terms jet and jet group as a special example of Lie group. First of all, groups $G_1^r$ and $G_n^1$ are described, then description of group $G_n^2$ and its subgroups ensues. Representations of these jet groups are proposed. Finally, applications of jet groups in continuum mechanics are mentioned. The thesis is complemented with algorithm of chosen problems in program Wolfram Mathematica.

Details

Database :
OAIster
Notes :
Czech
Publication Type :
Electronic Resource
Accession number :
edsoai.on1426596001
Document Type :
Electronic Resource