Back to Search
Start Over
Automatic Speech Recognition System Continually Improving Based on Subtitled Speech Data
-
Abstract
- V dnešnej dobe systémy rozpoznávania reči s veľkým slovníkom dosahujú pomerne vysoké presnosti. Za ich výsledkami však často stoja desiatky ba až stovky hodín manuálne oanotovaných trénovacích dát. Takéto dáta sú často bežne nedostupné alebo pre požadovaný jazyk vôbec neexistujú. Možným riešením je použitie bežne dostupných no menej kvalitných audiovizuálnych dát. Táto práca sa zaoberá technikou zpracovania práve takýchto dát a ich použitím pre trénovanie akustických modelov. Ďalej táto práca pojednáva o možnom využití týchto dát pre kontinuálne vylepšovanie modelov, kedže tieto dáta sú prakticky nevyčerpateľné. Pre tieto účely bol v rámci práce navrhnutý nový prístup pre výber dát.<br />Today's large vocabulary speech recognition systems are very accurate. However, tens or hundreds of hours of manually transcribed speech are needed in order to train such system. This kind of data is often unavailable, or they even do not exist for the desired language. A possible solution is to use commonly available but lower quality audiovisual data. This thesis addresses the methods of processing such data for semi-supervised training of acoustic models. Afterwards, it demonstrates how to continually improve already trained acoustic models by using these practically unlimited data. In this work is proposed a novel approach for selecting data based on similarity with the target domain.
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1426969860
- Document Type :
- Electronic Resource