Back to Search Start Over

Estimation of gravimetric vegetation moisture in the western United States using a multi-sensor approach

Authors :
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
Universitat Politècnica de Catalunya. CommSensLab-UPC - Centre Específic de Recerca en Comunicació i Detecció UPC
Chaparro Danon, David
Jagdhuber, Thomas
Piles Guillem, María
Jonard, François
Vall-Llossera Ferran, Mercedes Magdalena
Camps Carmona, Adriano José
López Martínez, Carlos
Fluhrer, Anke
Fernández Morán, Roberto
Baur, Martin J.
Feldman, Andrew F.
Entekhabi, Dara
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
Universitat Politècnica de Catalunya. CommSensLab-UPC - Centre Específic de Recerca en Comunicació i Detecció UPC
Chaparro Danon, David
Jagdhuber, Thomas
Piles Guillem, María
Jonard, François
Vall-Llossera Ferran, Mercedes Magdalena
Camps Carmona, Adriano José
López Martínez, Carlos
Fluhrer, Anke
Fernández Morán, Roberto
Baur, Martin J.
Feldman, Andrew F.
Entekhabi, Dara
Publication Year :
2023

Abstract

Vegetation optical depth (VOD) depends on the water, structure, and biomass of vegetation. Here, we propose a multi-sensor approach to isolate the water component from the VOD and to retrieve gravimetric vegetation moisture (m g ) in the western United States. The approach estimates VOD from radar and LiDAR data and minimizes the differences between these estimates and SMAP/AMSR2 VOD observations. This minimization allows to obtain the best fitting value of m g with help of a dielectric model. Results are consistent both in space (drier vegetation in arid areas) and time (drier vegetation in drier months). The mg estimates are in the same range than in situ mg data, with some underestimation (bias ~ -0.07 kg/kg). Statistical results are reasonable (r ~ 0.45, RMSE =0.10 kg/kg), yet the different spatial and temporal representation of in situ and remote measurements have an impact in the direct comparisons. Our results highlight the potential for developing new vegetation moisture datasets based on VOD decomposition.<br />The work of D. Chaparro was supported by the XXXIII Ramón Areces Postdoctoral Fellowship, and by “la Caixa” Foundation (ID 100010434) under Grant LCF/PR/MIT19/51840001 (MIT-Spain Seed Fund). This research was supported also by the Spanish Ministry of Science and Innovation (MCIN/AEI /10.13039/501100011 033), through the coordinated project INTERACT PID2020-114623RB-C32. M. Piles thanks the support of Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital through the project AI4CS CIPROM/2021/56.<br />Peer Reviewed<br />Postprint (author's final draft)

Details

Database :
OAIster
Notes :
4 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1427142846
Document Type :
Electronic Resource