Back to Search Start Over

Optimal extensions of Lipschitz maps on metric spaces of measurable functions

Authors :
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports
Generalitat Valenciana
Universitat Politècnica de València
Rueda, Pilar
Sánchez Pérez, Enrique Alfonso
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports
Generalitat Valenciana
Universitat Politècnica de València
Rueda, Pilar
Sánchez Pérez, Enrique Alfonso
Publication Year :
2024

Abstract

[EN] We prove a factorization theorem for Lipschitz operators acting on certain subsets of metric spaces of measurable functions and with values on general metric spaces. Our results show how a Lipschitz operator can be extended to a subset of other metric space of measurable functions that satisfies the following optimality condition: it is the biggest metric space, formed by measurable functions, to which the operator can be extended preserving the Lipschitz constant. As an application, we show the coarsest metric that can be given for a metric space in which an order bounded lattice-valued-Lipschitz map is defined. Concrete examples involving the relevant space L0(mu) are given.(c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

Details

Database :
OAIster
Notes :
TEXT, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1428306344
Document Type :
Electronic Resource