Back to Search
Start Over
Effects of Trace Elements on the Fatty Acid Composition in Danubian Fish Species
- Source :
- Animals
- Publication Year :
- 2024
-
Abstract
- Anthropogenic pollution poses a major threat to aquatic ecosystems, which can lead to their degradation. The accumulation and toxicity of metals and trace elements in fish leads to physiological and chemical changes in the fish body. In this study, we investigated the effects of bioaccumulation of metals and trace elements on freshwater fish fatty acid profiles at two different sites before and after the discharge of untreated municipal wastewater in two fish species with different diet habits. Although the concentrations of toxic elements were below the maximum levels proposed by the EU and the Republic of Serbia, this study showed statistically significant correlations between the presence of certain elements and the fatty acid (FA) profile in fish muscle. Lower concentrations of polyunsaturated FA in fish sampled after the discharge of untreated municipal wastewater were detected.<br />In this study, the concentrations of metals and trace elements (As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn) were determined in the muscle tissue of adult roach and white bream at two different sites in the Belgrade section of the Danube. Twenty-six fatty acids, consisting of nine saturated FA (SFAs), seven monosaturated FA (MUFAs) and ten polysaturated FA (PUFAs), were identified. The analysis of the concentration of metals and trace elements of the roach and white bream showed species-specific differences in their bioaccumulation. Four of all elements analyzed (As, Hg, Ni and Pb) correlated significantly with the changes in FA profiles in fish from both sampling sites, with the exception of Cu, which correlated with the FA profile at the site before, and Zn, whose concentration influenced the FA profile at the site after wastewater discharges. The lower PUFA content in the fish from a site under higher environment pressure could indicate that the fish are stressed. The results suggest that changes in lipid composition may be one of the protective mechanisms of cells to cope with anthropogenic stressors.
Details
- Database :
- OAIster
- Journal :
- Animals
- Notes :
- Animals
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1430719237
- Document Type :
- Electronic Resource