Back to Search Start Over

Analyzing and Improving Optimal-Transport-based Adversarial Networks

Authors :
Choi, Jaemoo
Choi, Jaewoong
Kang, Myungjoo
Choi, Jaemoo
Choi, Jaewoong
Kang, Myungjoo
Publication Year :
2023

Abstract

Optimal Transport (OT) problem aims to find a transport plan that bridges two distributions while minimizing a given cost function. OT theory has been widely utilized in generative modeling. In the beginning, OT distance has been used as a measure for assessing the distance between data and generated distributions. Recently, OT transport map between data and prior distributions has been utilized as a generative model. These OT-based generative models share a similar adversarial training objective. In this paper, we begin by unifying these OT-based adversarial methods within a single framework. Then, we elucidate the role of each component in training dynamics through a comprehensive analysis of this unified framework. Moreover, we suggest a simple but novel method that improves the previously best-performing OT-based model. Intuitively, our approach conducts a gradual refinement of the generated distribution, progressively aligning it with the data distribution. Our approach achieves a FID score of 2.51 on CIFAR-10 and 5.99 on CelebA-HQ-256, outperforming unified OT-based adversarial approaches.<br />Comment: 27 pages, 17 figures

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1438485688
Document Type :
Electronic Resource