Back to Search Start Over

IMPROVE:a feature model to predict neoepitope immunogenicity through broad-scale validation of T-cell recognition

Authors :
Borch, Annie
Carri, Ibel
Reynisson, Birkir
Alvarez, Heli M.Garcia
Munk, Kamilla K.
Montemurro, Alessandro
Kristensen, Nikolaj Pagh
Tvingsholm, Siri A.
Holm, Jeppe Sejerø
Heeke, Christina
Moss, Keith Henry
Hansen, Ulla Kring
Schaap-Johansen, Anna Lisa
Bagger, Frederik Otzen
de Lima, Vinicius Araujo Barbosa
Rohrberg, Kristoffer S.
Funt, Samuel A.
Donia, Marco
Svane, Inge Marie
Lassen, Ulrik
Barra, Carolina
Nielsen, Morten
Hadrup, Sine Reker
Borch, Annie
Carri, Ibel
Reynisson, Birkir
Alvarez, Heli M.Garcia
Munk, Kamilla K.
Montemurro, Alessandro
Kristensen, Nikolaj Pagh
Tvingsholm, Siri A.
Holm, Jeppe Sejerø
Heeke, Christina
Moss, Keith Henry
Hansen, Ulla Kring
Schaap-Johansen, Anna Lisa
Bagger, Frederik Otzen
de Lima, Vinicius Araujo Barbosa
Rohrberg, Kristoffer S.
Funt, Samuel A.
Donia, Marco
Svane, Inge Marie
Lassen, Ulrik
Barra, Carolina
Nielsen, Morten
Hadrup, Sine Reker
Source :
Borch , A , Carri , I , Reynisson , B , Alvarez , H M G , Munk , K K , Montemurro , A , Kristensen , N P , Tvingsholm , S A , Holm , J S , Heeke , C , Moss , K H , Hansen , U K , Schaap-Johansen , A L , Bagger , F O , de Lima , V A B , Rohrberg , K S , Funt , S A , Donia , M , Svane , I M , Lassen , U , Barra , C , Nielsen , M & Hadrup , S R 2024 , ' IMPROVE : a feature model to predict neoepitope immunogenicity through broad-scale validation of T-cell recognition ' , Frontiers in Immunology , vol. 15 , 1360281 .
Publication Year :
2024

Abstract

Background: Mutation-derived neoantigens are critical targets for tumor rejection in cancer immunotherapy, and better tools for neoepitope identification and prediction are needed to improve neoepitope targeting strategies. Computational tools have enabled the identification of patient-specific neoantigen candidates from sequencing data, but limited data availability has hindered their capacity to predict which of the many neoepitopes will most likely give rise to T cell recognition. Method: To address this, we make use of experimentally validated T cell recognition towards 17,500 neoepitope candidates, with 467 being T cell recognized, across 70 cancer patients undergoing immunotherapy. Results: We evaluated 27 neoepitope characteristics, and created a random forest model, IMPROVE, to predict neoepitope immunogenicity. The presence of hydrophobic and aromatic residues in the peptide binding core were the most important features for predicting neoepitope immunogenicity. Conclusion: Overall, IMPROVE was found to significantly advance the identification of neoepitopes compared to other current methods.

Details

Database :
OAIster
Journal :
Borch , A , Carri , I , Reynisson , B , Alvarez , H M G , Munk , K K , Montemurro , A , Kristensen , N P , Tvingsholm , S A , Holm , J S , Heeke , C , Moss , K H , Hansen , U K , Schaap-Johansen , A L , Bagger , F O , de Lima , V A B , Rohrberg , K S , Funt , S A , Donia , M , Svane , I M , Lassen , U , Barra , C , Nielsen , M & Hadrup , S R 2024 , ' IMPROVE : a feature model to predict neoepitope immunogenicity through broad-scale validation of T-cell recognition ' , Frontiers in Immunology , vol. 15 , 1360281 .
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1439390419
Document Type :
Electronic Resource