Back to Search Start Over

Trabecular titanium for orthopedic applications: balancing antimicrobial with osteoconductive properties by varying silver contents

Authors :
Universitat Politècnica de Catalunya. Departament de Ciència i Enginyeria de Materials
Universitat Politècnica de Catalunya. BBT - Grup de recerca en Biomaterials, Biomecànica i Enginyeria de Teixits
Uppsala universitet
Díez Escudero, Anna
Carlsson, Elin
Andersson, Brittmarie
Järhult, Josef D.
Hailer, Nils P.
Universitat Politècnica de Catalunya. Departament de Ciència i Enginyeria de Materials
Universitat Politècnica de Catalunya. BBT - Grup de recerca en Biomaterials, Biomecànica i Enginyeria de Teixits
Uppsala universitet
Díez Escudero, Anna
Carlsson, Elin
Andersson, Brittmarie
Järhult, Josef D.
Hailer, Nils P.
Publication Year :
2022

Abstract

Periprosthetic joint infection (PJI) and implant loosening are the most common complications after joint replacement surgery. Due to their increased surface area, additively manufactured porous metallic implants provide optimal osseointegration but they are also highly susceptible to bacterial colonization. Antibacterial surface coatings of porous metals that do not inhibit osseointegration are therefore highly desirable. The potential of silver coatings on arthroplasty implants to inhibit PJI has been demonstrated, but the optimal silver content and release kinetics have not yet been defined. A tight control over the silver deposition coatings can help overcome bacterial infections while reducing cytotoxicity to human cells. In this regard, porous titanium sputtered with silver and titanium nitride with increasing silver contents enabled controlling the antibacterial effect against common PJI pathogens while maintaining the metabolic activity of human primary cells. Electron beam melting additively manufactured titanium alloys, coated with increasing silver contents, were physico-chemically characterized and investigated for effects against common PJI pathogens. Silver contents from 7 at % to 18 at % of silver were effective in reducing bacterial growth and biofilm formation. Staphylococcus epidermidis was more susceptible to silver ions than Staphylococcus aureus. Importantly, all silver-coated titanium scaffolds supported primary human osteoblasts proliferation, differentiation, and mineralization up to 28 days. A slight reduction of cell metabolic activity was observed at earlier time points, but no detrimental effects were found at the end of the culture period. Silver release from the silver-coated scaffolds also had no measurable effects on primary osteoblast gene expression since similar expression of genes related to osteogenesis was observed regardless the presence of silver. The investigated silver-coated porous titanium scaffolds may thus enhance osseoin<br />Peer Reviewed<br />Postprint (published version)

Details

Database :
OAIster
Notes :
13 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1439653403
Document Type :
Electronic Resource