Sorry, I don't understand your search. ×
Back to Search Start Over

Toughening 3D printed biomimetic hydroxyapatite scaffolds: polycaprolactone-based self-hardening inks

Authors :
Universitat Politècnica de Catalunya. Doctorat en Ciència i Enginyeria dels Materials
Universitat Politècnica de Catalunya. Departament de Ciència i Enginyeria de Materials
Universitat Politècnica de Catalunya. BBT - Grup de recerca en Biomaterials, Biomecànica i Enginyeria de Teixits
Institut de Recerca Sant Joan de Déu
Mimetis Biomaterials
Centro de Investigación Biomédica en Red. Bioingeniería, Biomateriales y Nanomedicina
Institut de Bioenginyeria de Catalunya
Mazo Barbara, Laura del
Johansson, Linh Ha Huong Lovisa
Tampieri, Francesco
Ginebra Molins, Maria Pau
Universitat Politècnica de Catalunya. Doctorat en Ciència i Enginyeria dels Materials
Universitat Politècnica de Catalunya. Departament de Ciència i Enginyeria de Materials
Universitat Politècnica de Catalunya. BBT - Grup de recerca en Biomaterials, Biomecànica i Enginyeria de Teixits
Institut de Recerca Sant Joan de Déu
Mimetis Biomaterials
Centro de Investigación Biomédica en Red. Bioingeniería, Biomateriales y Nanomedicina
Institut de Bioenginyeria de Catalunya
Mazo Barbara, Laura del
Johansson, Linh Ha Huong Lovisa
Tampieri, Francesco
Ginebra Molins, Maria Pau
Publication Year :
2024

Abstract

The application of 3D printing to calcium phosphates has opened unprecedented possibilities for the fabrication of personalized bone grafts. However, their biocompatibility and bioactivity are counterbalanced by their high brittleness. In this work we aim at overcoming this problem by developing a self-hardening ink containing reactive ceramic particles in a polycaprolactone solution instead of the traditional approach that use hydrogels as binders. The presence of polycaprolactone preserved the printability of the ink and was compatible with the hydrolysis-based hardening process, despite the absence of water in the ink and its hydrophobicity. The microstructure evolved from a continuous polymeric phase with loose ceramic particles to a continuous network of hydroxyapatite nanocrystals intertwined with the polymer, in a configuration radically different from the polymer/ceramic composites obtained by fused deposition modelling. This resulted in the evolution from a ductile behavior, dominated by the polymer, to a stiffer behavior as the ceramic phase reacted. The polycaprolactone binder provides two highly relevant benefits compared to hydrogel-based inks. First, the handleability and elasticity of the as-printed scaffolds, together with the proven possibility of eliminating the solvent, opens the door to implanting the scaffolds freshly printed once lyophilized, while in a ductile state, and the hardening process to take place inside the body, as in the case of calcium phosphate cements. Second, even with a hydroxyapatite content of more than 92%, the flexural strength and toughness of the scaffolds after hardening are twice and five times those of the all-ceramic scaffolds obtained with the hydrogel-based inks, respectively.<br />Peer Reviewed<br />Postprint (published version)

Details

Database :
OAIster
Notes :
19 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1439657601
Document Type :
Electronic Resource