Back to Search Start Over

Artificial intelligence-based, wavelet-aided prediction of long-term outdoor performance of perovskite solar cells

Authors :
Ministerio de Educación y Ciencia (España)
Agencia Estatal de Investigación (España)
Ministerio de Ciencia e Innovación (España)
Ministerio de Ciencia, Innovación y Universidades (España)
Federal Ministry for Economics Affairs and Energy (Germany)
Ministry of Energy (Israel)
European Commission
European Research Council
German Research Foundation
Universidad Autónoma de Barcelona
Kouroudis, Ioannis
Tabah, Kenedy
Karimipour, Masoud
Ben Ali, Aziz
Kishore Kumar, D.
Sudhakar, Vediappan
Kant Gupta, Ritesh
Visoly-Fisher, Iris
Lira-Cantú, Mónica
Gagliardi, Alessio
Ministerio de Educación y Ciencia (España)
Agencia Estatal de Investigación (España)
Ministerio de Ciencia e Innovación (España)
Ministerio de Ciencia, Innovación y Universidades (España)
Federal Ministry for Economics Affairs and Energy (Germany)
Ministry of Energy (Israel)
European Commission
European Research Council
German Research Foundation
Universidad Autónoma de Barcelona
Kouroudis, Ioannis
Tabah, Kenedy
Karimipour, Masoud
Ben Ali, Aziz
Kishore Kumar, D.
Sudhakar, Vediappan
Kant Gupta, Ritesh
Visoly-Fisher, Iris
Lira-Cantú, Mónica
Gagliardi, Alessio
Publication Year :
2024

Abstract

The commercial development of perovskite solar cells (PSCs) has been significantly delayed by the constraint of performing time-consuming degradation studies under real outdoor conditions. These are necessary steps to determine the device lifetime, an area where PSCs traditionally suffer. In this work, we demonstrate that the outdoor degradation behavior of PSCs can be predicted by employing accelerated indoor stability analyses. The prediction was possible using a swift and accurate pipeline of machine learning algorithms and mathematical decompositions. By training the algorithms with different indoor stability data sets, we can determine the most relevant stress factors, thereby shedding light on the outdoor degradation pathways. Our methodology is not specific to PSCs and can be extended to other PV technologies where degradation and its mechanisms are crucial elements of their widespread adoption.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1442727688
Document Type :
Electronic Resource