Back to Search Start Over

Additive Bayesian Network Modeling with the R Package abn

Authors :
Kratzer, Gilles; https://orcid.org/0000-0002-5929-8935
Lewis, Fraser; https://orcid.org/0000-0003-4580-2712
Comin, Arianna; https://orcid.org/0000-0002-1765-1825
Pittavino, Marta; https://orcid.org/0000-0002-1232-1034
Furrer, Reinhard; https://orcid.org/0000-0002-6319-2332
Kratzer, Gilles; https://orcid.org/0000-0002-5929-8935
Lewis, Fraser; https://orcid.org/0000-0003-4580-2712
Comin, Arianna; https://orcid.org/0000-0002-1765-1825
Pittavino, Marta; https://orcid.org/0000-0002-1232-1034
Furrer, Reinhard; https://orcid.org/0000-0002-6319-2332
Source :
Kratzer, Gilles; Lewis, Fraser; Comin, Arianna; Pittavino, Marta; Furrer, Reinhard (2023). Additive Bayesian Network Modeling with the R Package abn. Journal of Statistical Software, 105(8):online.
Publication Year :
2023

Abstract

The R package abn is designed to fit additive Bayesian models to observational datasets. It contains routines to score Bayesian networks based on Bayesian or information theoretic formulations of generalized linear models. It is equipped with exact search and greedy search algorithms to select the best network. It supports a possible blend of continuous, discrete and count data and input of prior knowledge at a structural level. The Bayesian implementation supports random effects to control for one-layer clustering. In this paper, we give an overview of the methodology and illustrate the package's functionalities using a veterinary dataset about respiratory diseases in commercial swine production.

Details

Database :
OAIster
Journal :
Kratzer, Gilles; Lewis, Fraser; Comin, Arianna; Pittavino, Marta; Furrer, Reinhard (2023). Additive Bayesian Network Modeling with the R Package abn. Journal of Statistical Software, 105(8):online.
Notes :
application/pdf, info:doi/10.5167/uzh-232998, English, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1443052837
Document Type :
Electronic Resource