Back to Search Start Over

Magnetic Interactions in Systems with Strong Spin-Orbit Coupling

Authors :
van den Brink, Jeroen
Lounis, Samir
Technische Universität Dresden
IFW Dresden
Eldeeb, Mohamed Sabry
van den Brink, Jeroen
Lounis, Samir
Technische Universität Dresden
IFW Dresden
Eldeeb, Mohamed Sabry
Publication Year :
2023

Abstract

In the context of the search and tuning for novel magnetic materials, transition metal compounds exhibit remarkable features where the spin-orbit interaction is crucial. The collective interactions between various effects, like spins and charges, create different classes of unique magnetic systems. For heavy transition-metal compounds, the strength of spin-orbital coupling is enhanced. The jeff. = 1/2 Mott insulating state emerges from the combination of the spin-orbit interaction and the electronic correlations. The quantum-chemistry methods are employed in this thesis to investigate single- and two-site magnetic interactions of the selected transition-metal compounds. We also provide different estimations for the single- and two-site magnetic interactions based on the level of calculation accuracy. In this thesis, we apply ab initio quantum-chemistry methods to explore the electronic and magnetic properties of several d/f compounds. The thesis structure is as follows: In Chapter 1, the introduction of the thesis provides a short discussion of the electronic correlations and magnetism in transition metal compounds. In Chapter 2, the fundamentals of the quantum chemistry wavefunction-based approach are covered. This chapter gives an overview of the applied methods in this thesis. In Chapter 3, we discuss the quantum chemistry approach to investigate the material candidates to host Kitaev physics. The technique to obtain the strength of two-site magnetic couplings, including the Kitaev coupling, is discussed in-depth. In Chapter 4, we apply the technique, which is described in Chapter 3, to investigate the two-site magnetic interactions in the H3LiIr2O6, and Cu2IrO2 compounds as Kitaev candidates. The two-site magnetic couplings are reported in these compounds. In Chapter 5, we use quantum chemistry methods to investigate the on-site electronic and magnetic properties in the KCeO2 compound where 4f1 Ce3+ ions form a triangular two-dimensional lattice with sites of ef

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1446863357
Document Type :
Electronic Resource