Back to Search Start Over

Digital tool for indoor air pollutants simulation in industrial workplaces

Authors :
Universitat Politècnica de Catalunya. Doctorat en Enginyeria Ambiental
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Projectes i de la Construcció
Universitat Politècnica de Catalunya. GRIC - Grup de Recerca i Innovació de la Construcció
Cebolla Alemany, Joaquim
Macarulla Martí, Marcel
Viana Rodríguez, Mar
Gassó Domingo, Santiago
López Carreño, Rubén-Daniel
Universitat Politècnica de Catalunya. Doctorat en Enginyeria Ambiental
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Projectes i de la Construcció
Universitat Politècnica de Catalunya. GRIC - Grup de Recerca i Innovació de la Construcció
Cebolla Alemany, Joaquim
Macarulla Martí, Marcel
Viana Rodríguez, Mar
Gassó Domingo, Santiago
López Carreño, Rubén-Daniel
Publication Year :
2023

Abstract

Nanoparticles (NP), aerosols under 100 nm of nominal diameter, might be responsible of multiple diseases (cardiovascular, nervous, respiratory, cancer, etc.) in mid- and long-term exposed workers in industrial layouts. These particles in suspension are not just originated from nanomaterials manufacturing, but also accidentally by plenty of industrial high-energetic and machining processes, such as atmospheric plasma spraying, welding or ceramic tiles firing, representing a potential danger for manufacturers from a wide variety of sectors. This paper will present a simulation tool of Incidental NanoParticles’ (INP) concentration in industrial environments that is currently under development within the Life Nanohealth European project to assess occupational health to external and internal hygiene risk prevention services. The concentration model has been implemented through a Modelica library and evaluated with a case study with real work conditions in an industrial plant with different processes, materials, ventilation systems and sources’ nature. Obtained results show simulations that are coherent with the field campaigns’ data, reaching a prediction precision over the error of the used sensors and a high correlation between measurements and model.<br />This research is part of a LIFE-funded project (LIFE20 ENV/ES/000187). The authors acknowledge SALONI (https://saloni.com/) for their committed cooperation. The first author gratefully acknowledges the Universitat Politècnica de Catalunya for the financia.<br />Postprint (published version)

Details

Database :
OAIster
Notes :
12 p., application/pdf, application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1452493751
Document Type :
Electronic Resource