Back to Search Start Over

Electrochemical Detection of Pseudomonas aeruginosa Quorum Sensing Molecule (S)-N-Butyryl Homoserine Lactone Using Molecularly Imprinted Polymers

Authors :
Frigoli, Margaux
Lowdon, Joseph W
Donetti, Nicolas
Crapnell, Robert D
Banks, Craig E
Cleij, Thomas J
Diliën, Hanne
Eersels, Kasper
van Grinsven, Bart
Frigoli, Margaux
Lowdon, Joseph W
Donetti, Nicolas
Crapnell, Robert D
Banks, Craig E
Cleij, Thomas J
Diliën, Hanne
Eersels, Kasper
van Grinsven, Bart
Publication Year :
2024

Abstract

Pseudomonas aeruginosa is a multidrug-resistant Gram-negative bacterium that poses a significant threat to public health, necessitating rapid and on-site detection methods for rapid recognition. The goal of the project is therefore to indirectly detect the presence of P. aeruginosa in environmental water samples targeting one of its quorum-sensing molecules, namely, (S)-N-butyryl homoserine lactone (BHL). To this aim, molecularly imprinted polymers (MIPs) were synthesized via bulk free-radical polymerization using BHL as a template molecule. The obtained MIP particles were immobilized onto screen-printed electrodes (MIP-SPEs), and the BHL rebinding was analyzed via electrochemical impedance spectroscopy (EIS). To study the specificity of the synthesized MIPs, isotherm curves were built after on-point rebinding analysis performed via LC–MS measurements for both MIPs and NIPs (nonimprinted polymers, used as a negative control), obtaining an imprinting factor (IF) of 2.8 (at Cf = 0.4 mM). The MIP-SPEs were integrated into an electrochemical biosensor with a linear range of 1 × 101–1 × 103 nM and a limit of detection (LoD) of 31.78 ± 4.08 nM. Selectivity measurements were also performed after choosing specific interferent molecules, such as structural analogs and potential interferents, followed by on-point analysis performed in spiked tap water to prove the sensor’s potential to detect the presence of the quorum-sensing molecule in environmentally related real-life samples.

Details

Database :
OAIster
Notes :
text, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1457294344
Document Type :
Electronic Resource