Back to Search Start Over

Spin-polarized transport in F/S nanojunctions

Authors :
Taddei, F
Sanvito, S
Lambert, C. J.
Taddei, F
Sanvito, S
Lambert, C. J.
Publication Year :
2001

Abstract

We study spin-dependent electronic transport across ferromagnet/superconductor ballistic junctions modeled using tight-binding Hamiltonians with s, p and d orbitals and material-specific parameters. The first result of this paper is that, by accurately modeling the band structure of the bulk materials, one can reproduce the measured differential conductance of Cu/Pb nanocontacts(1,2). In contrast the differential conductance of Co/Pb contacts can only be reproduced if an enhanced magnetic moment is present at the interface. The second result concerns the reliability of a method proposed in Refs. 1-3 for determining the degree of polarization of a ferromagnet. By fitting the material-specific differential conductance curves to curves calculated using a single-band model we show that this method does not yield reliable values for polarization and spin-dependent transmission.

Details

Database :
OAIster
Notes :
Taddei, F and Sanvito, S and Lambert, C. J. (2001) Spin-polarized transport in F/S nanojunctions. Journal of Low Temperature Physics, 124 (1-2). pp. 305-320. ISSN 0022-2291
Publication Type :
Electronic Resource
Accession number :
edsoai.on1477749432
Document Type :
Electronic Resource