Back to Search Start Over

Delineating Standing Deadwood in High-Resolution RGB Drone Imagery

Authors :
Möhring, Jakobus
Mosig, Clemens
Cheng, Yan
Mahecha, Miguel
Priego, Oscar Perez
Beloiu, Mirela
Volpi, Michele
Horion, Stéphanie
Latifi, Hooman
Shafeian, Elham
Fassnacht, Fabian
Montero, David
Zielewska-Büttner, Katarzyna
Laliberté, Etienne
Cloutier, Myriam
Schmehl, Marie-Therese
Frick, Annett
Müller-Landau, Helene
Cushman, KC
Hupy, Joseph
Ma, Qin
Su, Yanjun
Khatri-Chhetri, Pratima
Kruse, Stefan
Frey, Julian
Schiefer, Felix
Junttila, Samuli
Potts, Alastair
Uhl, Andreas
Rossi, Christian
Kattenborn, Teja
Möhring, Jakobus
Mosig, Clemens
Cheng, Yan
Mahecha, Miguel
Priego, Oscar Perez
Beloiu, Mirela
Volpi, Michele
Horion, Stéphanie
Latifi, Hooman
Shafeian, Elham
Fassnacht, Fabian
Montero, David
Zielewska-Büttner, Katarzyna
Laliberté, Etienne
Cloutier, Myriam
Schmehl, Marie-Therese
Frick, Annett
Müller-Landau, Helene
Cushman, KC
Hupy, Joseph
Ma, Qin
Su, Yanjun
Khatri-Chhetri, Pratima
Kruse, Stefan
Frey, Julian
Schiefer, Felix
Junttila, Samuli
Potts, Alastair
Uhl, Andreas
Rossi, Christian
Kattenborn, Teja
Source :
Möhring , J , Mosig , C , Cheng , Y , Mahecha , M , Priego , O P , Beloiu , M , Volpi , M , Horion , S , Latifi , H , Shafeian , E , Fassnacht , F , Montero , D , Zielewska-Büttner , K , Laliberté , E , Cloutier , M , Schmehl , M-T , Frick , A , Müller-Landau , H , Cushman , KC , Hupy , J , Ma , Q , Su , Y , Khatri-Chhetri , P , Kruse , S , Frey , J , Schiefer , F , Junttila , S , Potts , A , Uhl , A , Rossi , C & Kattenborn , T 2024 , ' Delineating Standing Deadwood in High-Resolution RGB Drone Imagery ' , EGU General Assembly 2024 , Vienna , Austria , 15/04/2024 - 19/04/2024 .
Publication Year :
2024

Abstract

We have observed tree die-offs in a variety of regions in the world. Understanding the diverse causes of tree mortality requires exact information about which trees are dying and where. With the increased user-friendliness of drones and the availability of airborne imagery, high-resolution imagery of forests is becoming widely available. Delineating standing deadwood in such aerial imagery has become a classic segmentation task and several models with varying accuracy have been developed. However, these machine-learning based models are not generic and limited to specific image resolutions, sensor characteristics, geographic regions, and forest ecosystems. The reason for this lack of generality is that previous models have been trained using only datasets representative of specific regions and obtained from a single source. In this study, we obtain a diverse dataset spanning more than a dozen countries across continents and implement a single convolutional neural network (CNN) model that is able to cope with most forest ecosystems, varying image quality, and spatial resolutions.

Details

Database :
OAIster
Journal :
Möhring , J , Mosig , C , Cheng , Y , Mahecha , M , Priego , O P , Beloiu , M , Volpi , M , Horion , S , Latifi , H , Shafeian , E , Fassnacht , F , Montero , D , Zielewska-Büttner , K , Laliberté , E , Cloutier , M , Schmehl , M-T , Frick , A , Müller-Landau , H , Cushman , KC , Hupy , J , Ma , Q , Su , Y , Khatri-Chhetri , P , Kruse , S , Frey , J , Schiefer , F , Junttila , S , Potts , A , Uhl , A , Rossi , C & Kattenborn , T 2024 , ' Delineating Standing Deadwood in High-Resolution RGB Drone Imagery ' , EGU General Assembly 2024 , Vienna , Austria , 15/04/2024 - 19/04/2024 .
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1478334281
Document Type :
Electronic Resource