Back to Search
Start Over
On the Reunification of Chemical and Biochemical Thermodynamics: A Simple Example for Classroom Use
- Source :
-
Journal of Chemical Education . Feb 2019 96(2):274-284. - Publication Year :
- 2019
-
Abstract
- For 26 years, it has been assumed by some that the thermodynamics of open-system biochemical reactions must be executed by performing Legendre transformations on the terms involving the species whose concentrations are being held fixed. In contrast, standard nontransformed thermodynamics applies to chemical processes. However, it has recently been shown that such biochemical reactions may be accurately examined using either method. The papers that report this finding use the hydrolysis of ATP at fixed pH and pMg as an example. This biochemical process comprises 14 equilibrium reactions involving 17 chemical species. Consequently, the chemical and mathematical complexity is so high that the underlying principles leading to the equivalence of the two methods tend to become lost. Furthermore, the details of such an example are too complex for classroom presentation. This paper makes these principles abundantly clear by the thermodynamic examination of the simple case of a unimolecular isomerization conducted under both open and closed conditions. For the open system, the analysis is conducted using both Legendre-transformed and nontransformed methods. The results are shown to be identical provided that the chemical potentials of the terms on which the transform is performed are held constant. More importantly, the analysis makes the underlying reasons for the equivalence of the two methods very clear and shows when they will not be equivalent. The model is ideally suited for classroom presentation because of its chemical and mathematical simplicity.
Details
- Language :
- English
- ISSN :
- 0021-9584
- Volume :
- 96
- Issue :
- 2
- Database :
- ERIC
- Journal :
- Journal of Chemical Education
- Publication Type :
- Academic Journal
- Accession number :
- EJ1205722
- Document Type :
- Journal Articles<br />Reports - Descriptive
- Full Text :
- https://doi.org/10.1021/acs.jchemed.8b00795