1. Preparation and in vitro evaluation of hot-melt extruded pectin-based pellets containing ketoprofen for colon targeting
- Author
-
Sagar Narala, Dinesh Nyavanandi, Preethi Mandati, Ahmed Adel Ali Youssef, Abdullah Alzahrani, Praveen Kolimi, Feng Zhang, and Michael Repka
- Subjects
Ketoprofen ,Pectin ,Hot-melt extrusion ,Colon targeting ,Hydroxypropyl methylcellulose ,Pharmacy and materia medica ,RS1-441 - Abstract
This work developed high drug-load pellets for colon targeting in minimal steps by coupling hot-melt extrusion (HME) with a die-surface cutting pelletizer, offering a potential continuous pellet manufacturing process. Ketoprofen (KTP) was selected as a model drug for this study due to its thermal stability and severe upper gastrointestinal side effects. Low and high methoxyl grade pectins were the enzyme-triggered release matrix, and hydroxypropyl methylcellulose (HME 4 M/HME 100LV) was used as a premature release-retarding agent. The powder X-ray diffraction technique and the differential scanning calorimetry results revealed that KTP exists in the solid-solution state within the polymeric matrix after the HME step. The scanning electron micrographs of the fabricated pellets showed a smooth surface without any cracks. The lead formulation showed the lowest premature drug release (∼13%) with an extended KTP release profile over a 24 h period in the presence and absence of the release-triggering enzyme. The lead formulation was stable for 3 months at accelerated stability conditions (40 °C/75 ± 5% RH) concerning drug content, in vitro release, and thermal characteristics. In summary, coupling HME and pelletization processes could be a promising technology for developing colon-targeted drug delivery systems.
- Published
- 2023
- Full Text
- View/download PDF