1. The transcription factors ZAT5 and BLH2/4 regulate homogalacturonan demethylesterification in Arabidopsis seed coat mucilage.
- Author
-
Xie M, Ding A, Guo Y, Sun J, Qiu W, Chen M, Li Z, Li S, Zhou G, Xu Y, Wang M, Richel A, Gong D, and Kong Y
- Subjects
- Esterification, Carboxylic Ester Hydrolases metabolism, Carboxylic Ester Hydrolases genetics, Mutation, Arabidopsis metabolism, Arabidopsis genetics, Arabidopsis Proteins metabolism, Arabidopsis Proteins genetics, Pectins metabolism, Seeds metabolism, Seeds genetics, Gene Expression Regulation, Plant, Transcription Factors metabolism, Transcription Factors genetics, Plant Mucilage metabolism
- Abstract
The level of methylesterification alters the functional properties of pectin, which is believed to influence plant growth and development. However, the mechanisms that regulate demethylesterification remain largely unexplored. Pectin with a high degree of methylesterification is produced in the Golgi apparatus and then transferred to the primary cell wall where it is partially demethylesterified by pectin methylesterases (PMEs). Here, we show that in Arabidopsis (Arabidopsis thaliana) seed mucilage, pectin demethylesterification is negatively regulated by the transcription factor ZINC FINGER FAMILY PROTEIN5 (ZAT5). Plants carrying null mutations in ZAT5 had increased PME activity, decreased pectin methylesterification, and produced seeds with a thinner mucilage layer. We provide evidence that ZAT5 binds to a TGATCA motif and thereby negatively regulates methylesterification by reducing the expression of PME5, HIGHLY METHYL ESTERIFIED SEEDS (HMS)/PME6, PME12, and PME16. We also demonstrate that ZAT5 physically interacts with BEL1-LIKE HOMEODOMAIN2 (BLH2) and BLH4 transcription factors. BLH2 and BLH4 are known to modulate pectin demethylesterification by directly regulating PME58 expression. The ZAT5-BLH2/4 interaction provides a mechanism to control the degree of pectin methylesterification in seed coat mucilage by modifying each transcription factor's ability to regulate the expression of target genes encoding PMEs. Taken together, these findings reveal a transcriptional regulatory module comprising ZAT5, BLH2, and BLH4, that functions in modulating the demethylesterification of homogalacturonan in seed coat mucilage., Competing Interests: Conflict of interest statement. The authors declare no conflict of interest., (© The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF