1. Convergent evolution of plant pattern recognition receptors sensing cysteine-rich patterns from three microbial kingdoms.
- Author
-
Yang Y, Steidele CE, Rössner C, Löffelhardt B, Kolb D, Leisen T, Zhang W, Ludwig C, Felix G, Seidl MF, Becker A, Nürnberger T, Hahn M, Gust B, Gross H, Hückelhoven R, and Gust AA
- Subjects
- Cysteine metabolism, Ligands, Proteins metabolism, Bacteria metabolism, Receptors, Pattern Recognition metabolism, Plant Diseases microbiology, Plant Immunity, Gene Expression Regulation, Plant, Arabidopsis metabolism, Oomycetes metabolism, Arabidopsis Proteins genetics, Arabidopsis Proteins metabolism
- Abstract
The Arabidopsis thaliana Receptor-Like Protein RLP30 contributes to immunity against the fungal pathogen Sclerotinia sclerotiorum. Here we identify the RLP30-ligand as a small cysteine-rich protein (SCP) that occurs in many fungi and oomycetes and is also recognized by the Nicotiana benthamiana RLP RE02. However, RLP30 and RE02 share little sequence similarity and respond to different parts of the native/folded protein. Moreover, some Brassicaceae other than Arabidopsis also respond to a linear SCP peptide instead of the folded protein, suggesting that SCP is an eminent immune target that led to the convergent evolution of distinct immune receptors in plants. Surprisingly, RLP30 shows a second ligand specificity for a SCP-nonhomologous protein secreted by bacterial Pseudomonads. RLP30 expression in N. tabacum results in quantitatively lower susceptibility to bacterial, fungal and oomycete pathogens, thus demonstrating that detection of immunogenic patterns by Arabidopsis RLP30 is involved in defense against pathogens from three microbial kingdoms., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF