1. Profiling of insulin-resistant kidney models and human biopsies reveals common and cell-type-specific mechanisms underpinning Diabetic Kidney Disease.
- Author
-
Lay AC, Tran VDT, Nair V, Betin V, Hurcombe JA, Barrington AF, Pope RJ, Burdet F, Mehl F, Kryvokhyzha D, Ahmad A, Sinton MC, Lewis P, Wilson MC, Menon R, Otto E, Heesom KJ, Ibberson M, Looker HC, Nelson RG, Ju W, Kretzler M, Satchell SC, Gomez MF, and Coward RJM more...
- Subjects
- Humans, Biopsy, Transcriptome, Gene Expression Profiling, Proteomics, Signal Transduction, Diabetic Nephropathies metabolism, Diabetic Nephropathies pathology, Insulin Resistance, Kidney pathology, Kidney metabolism
- Abstract
Diabetic kidney disease (DKD) is the leading cause of end stage kidney failure worldwide, of which cellular insulin resistance is a major driver. Here, we study key human kidney cell types implicated in DKD (podocytes, glomerular endothelial, mesangial and proximal tubular cells) in insulin sensitive and resistant conditions, and perform simultaneous transcriptomics and proteomics for integrated analysis. Our data is further compared with bulk- and single-cell transcriptomic kidney biopsy data from early- and advanced-stage DKD patient cohorts. We identify several consistent changes (individual genes, proteins, and molecular pathways) occurring across all insulin-resistant kidney cell types, together with cell-line-specific changes occurring in response to insulin resistance, which are replicated in DKD biopsies. This study provides a rich data resource to direct future studies in elucidating underlying kidney signalling pathways and potential therapeutic targets in DKD., Competing Interests: Competing interests The authors declare no competing interests., (© 2024. The Author(s).) more...
- Published
- 2024
- Full Text
- View/download PDF