14 results on '"ultra-small-angle X-ray scattering"'
Search Results
2. Small-angle X-ray scattering in the era of fourth-generation light sources.
- Author
-
Narayanan T, Chèvremont W, and Zinn T
- Abstract
Recently, fourth-generation synchrotron sources with several orders of magnitude higher brightness and higher degree of coherence compared with third-generation sources have come into operation. These new X-ray sources offer exciting opportunities for the investigation of soft matter and biological specimens by small-angle X-ray scattering (SAXS) and related scattering methods. The improved beam properties together with the advanced pixel array detectors readily enhance the angular resolution of SAXS and ultra-small-angle X-ray scattering in the pinhole collimation. The high degree of coherence is a major boost for the X-ray photon correlation spectroscopy (XPCS) technique, enabling the equilibrium dynamics to be probed over broader time and length scales. This article presents some representative examples illustrating the performance of SAXS and XPCS with the Extremely Brilliant Source at the European Synchrotron Radiation Facility. The rapid onset of radiation damage is a significant challenge with the vast majority of samples, and appropriate protocols need to be adopted for circumventing this problem., (© Theyencheri Narayanan et al. 2023.)
- Published
- 2023
- Full Text
- View/download PDF
3. Comparison of nanocomposite dispersion and distribution for several melt mixers.
- Author
-
Veigel D, Rishi K, Okoli U, Beaucage G, Galloway JA, Campanelli H, Ilavsky J, Kuzmenko I, and Fickenscher M
- Abstract
Breakup (dispersion) and distribution of nanoparticles are the chief hurdles towards taking advantage of nanoparticles in polymer nanocomposites for reinforcement, flame retardancy, conductivity, chromaticity, and other properties. Microscopy is often used to quantify mixing, but it has a limited field of view, does not average over bulk samples, and fails to address nano-particle hierarchical structures. Ultra-small-angle X-ray scattering (USAXS) can provide a macroscopic statistical average of nanoscale dispersion (breakup) and emergent hierar-chical structure, as well as the distribution on the nanoscale. This work compares several common mixer geometries for carbon black-polystyrene nanocomposites. Two twin-screw extruder geometries, typical for industrial processing of melt blends, are compared with a laboratory-scale single screw extruder and a Banbury mixer. It is found that for a given mixer, nanoscale distribution increases following a van der Waals function using accumulated strain as an analogue for temperature while macroscopic distribution/dispersion, using microscopy, does not follow this dependency. Breakup and aggregation in dispersive mixing follow expected behavior on the nanoscale. Across these drastically different mixing geometries an unexpected dependency is observed for nanoscale distributive mixing (both nano and macroscopic) as a function of accumulated strain that may reflect a transition from distributive turbulent to dispersive laminar mixing as the mixing gap is reduced.
- Published
- 2023
- Full Text
- View/download PDF
4. Developing a Microbubble-Based Contrast Agent for Synchrotron Multiple-Image Radiography.
- Author
-
Ton N, Goncin U, Panahifar A, Webb MA, Chapman D, Wiebe S, and Machtaler S
- Subjects
- Agar, Canada, Lipids, Polymers, Radiography, Synchrotrons, Contrast Media, Microbubbles
- Abstract
Purpose: Multiple-image radiography (MIR) is an analyzer-based synchrotron X-ray imaging approach capable of dissociating absorption, refraction, and scattering components of X-ray interaction with the material. It generates additional image contrast mechanisms (besides absorption), especially in the case of soft tissues, while minimizing absorbed radiation dose. Our goal is to develop a contrast agent for MIR using ultrasound microbubbles by carrying out a systematic assessment of size, shell material, and concentration., Procedures: Microbubbles were synthesized with two different shell materials: phospholipid and polyvinyl-alcohol. Polydisperse perfluorobutane-filled lipid microbubbles were divided into five size groups using centrifugation. Two distributions of air-filled polymer microbubbles were generated: 2-3 µm and 3-4 µm. A subset of polymer microbubbles 3-4 µm had iron oxide nanoparticles incorporated into their shell or coated on their surface. Microbubbles were immobilized in agar with different concentrations: 5 × 10
7 , 5 × 106 , and 5 × 105 MBs/ml. MIR was conducted on the BioMedical Imaging and Therapy beamline at the Canadian Light Source. Three images were generated: Gaussian amplitude, refraction, and ultra-small-angle X-ray scattering (USAXS). The contrast signal was quantified by measuring mean pixel values and comparing them with agar., Results: No difference was detected in absorption or refraction images of all tested microbubbles. Using USAXS, a significant signal increase was observed with lipid microbubbles 6-10 µm at the highest concentration (p = 0.02), but no signal was observed at lower concentrations., Conclusions: These data indicate that lipid microbubbles 6-10 µm are candidates as contrast agents for MIR, specifically for USAXS. A minimum concentration of 5 × 107 microbubbles (lipid-shell 6-10 µm) per milliliter was needed to generate a detectable signal., (© 2022. World Molecular Imaging Society.)- Published
- 2022
- Full Text
- View/download PDF
5. Performance of the time-resolved ultra-small-angle X-ray scattering beamline with the Extremely Brilliant Source.
- Author
-
Narayanan T, Sztucki M, Zinn T, Kieffer J, Homs-Puron A, Gorini J, Van Vaerenbergh P, and Boesecke P
- Abstract
The new technical features and enhanced performance of the ID02 beamline with the Extremely Brilliant Source (EBS) at the ESRF are described. The beamline enables static and kinetic investigations of a broad range of systems from ångström to micrometre size scales and down to the sub-millisecond time range by combining different small-angle X-ray scattering techniques in a single instrument. In addition, a nearly coherent beam obtained in the high-resolution mode allows multispeckle X-ray photon correlation spectroscopy measurements down to the microsecond range over the ultra-small- and small-angle regions. While the scattering vector (of magnitude q ) range covered is the same as before, 0.001 ≤ q ≤ 50 nm
-1 for an X-ray wavelength of 1 Å, the EBS permits relaxation of the collimation conditions, thereby obtaining a higher flux throughput and lower background. In particular, a coherent photon flux in excess of 1012 photons s-1 can be routinely obtained, allowing dynamic studies of relatively dilute samples. The enhanced beam properties are complemented by advanced pixel-array detectors and high-throughput data reduction pipelines. All these developments together open new opportunities for structural, dynamic and kinetic investigations of out-of-equilibrium soft matter and biophysical systems., (© Theyencheri Narayanan et al. 2022.)- Published
- 2022
- Full Text
- View/download PDF
6. Evolution of the analytical scattering model of live Escherichia coli .
- Author
-
Semeraro EF, Marx L, Mandl J, Frewein MPK, Scott HL, Prévost S, Bergler H, Lohner K, and Pabst G
- Abstract
A previously reported multi-scale model for (ultra-)small-angle X-ray (USAXS/SAXS) and (very) small-angle neutron scattering (VSANS/SANS) of live Escherichia coli was revised on the basis of compositional/metabolomic and ultrastructural constraints. The cellular body is modeled, as previously described, by an ellipsoid with multiple shells. However, scattering originating from flagella was replaced by a term accounting for the oligosaccharide cores of the lipopolysaccharide leaflet of the outer membrane including its cross-term with the cellular body. This was mainly motivated by (U)SAXS experiments showing indistinguishable scattering for bacteria in the presence and absence of flagella or fimbrae. The revised model succeeded in fitting USAXS/SAXS and differently contrasted VSANS/SANS data of E. coli ATCC 25922 over four orders of magnitude in length scale. Specifically, this approach provides detailed insight into structural features of the cellular envelope, including the distance of the inner and outer membranes, as well as the scattering length densities of all bacterial compartments. The model was also successfully applied to E. coli K12, used for the authors' original modeling, as well as for two other E. coli strains. Significant differences were detected between the different strains in terms of bacterial size, intermembrane distance and its positional fluctuations. These findings corroborate the general applicability of the approach outlined here to quantitatively study the effect of bactericidal compounds on ultrastructural features of Gram-negative bacteria without the need to resort to any invasive staining or labeling agents., (© Enrico F. Semeraro et al. 2021.)
- Published
- 2021
- Full Text
- View/download PDF
7. Correlating inter-particle forces and particle shape to shear-induced aggregation/fragmentation and rheology for dilute anisotropic particle suspensions: A complementary study via capillary rheometry and in-situ small and ultra-small angle X-ray scattering.
- Author
-
Krzysko AJ, Nakouzi E, Zhang X, Graham TR, Rosso KM, Schenter GK, Ilavsky J, Kuzmenko I, Frith MG, Ivory CF, Clark SB, Weston JS, Weigandt KM, De Yoreo JJ, Chun J, and Anovitz LM
- Abstract
Hypothesis: Understanding the stability and rheological behavior of suspensions composed of anisotropic particles is challenging due to the complex interplay of hydrodynamic and colloidal forces. We propose that orientationally-dependent interactions resulting from the anisotropic nature of non-spherical sub-units strongly influences shear-induced particle aggregation/fragmentation and suspension rheological behavior., Experiments: Wide-, small-, and ultra-small-angle X-ray scattering experiments were used to simultaneously monitor changes in size and fractal dimensions of boehmite aggregates from 6 to 10,000 Å as the sample was recirculated through an in-situ capillary rheometer. The latter also provided simultaneous suspension viscosity data. Computational fluid dynamics modeling of the apparatus provided a more rigorous analysis of the fluid flow., Findings: Shear-induced aggregation/fragmentation was correlated with a complicated balance between hydrodynamic and colloidal forces. Multi-scale fractal aggregates formed in solution but the largest could be fragmented by shear. Orientationally-dependent interactions lead to a relatively large experimental suspension viscosity when the hydrodynamic force was small compared to colloidal forces. This manifests even at low boehmite mass fractions., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2020. Published by Elsevier Inc.)
- Published
- 2020
- Full Text
- View/download PDF
8. Ultrasound-based formation of nano-Pickering emulsions investigated via in-situ SAXS.
- Author
-
Lee YT, Li DS, Ilavsky J, Kuzmenko I, Jeng GS, O'Donnell M, and Pozzo LD
- Abstract
Sonication is one of the most commonly used methods to synthesize Pickering emulsions. Yet, the process of emulsion sonication is rarely characterized in detail and acoustic conditions are largely determined by experimenter's personal experience. In this study, the role of sonication in the formation of Pickering emulsions from amphiphilic gold nanoparticles was investigated using a new sample environment combining ultrasound delivery with ultra-small-angle X-ray scattering (USAXS) measurements. The detection of acoustic cavitation and the simultaneous analysis of structural data via USAXS demonstrated direct correlation between Pickering emulsion formation and cavitation events. There was no evidence of spontaneous adsorption of particles onto the oil-water interface without ultrasound, which suggests the presence of a stabilizing force. Acoustically detected cavitation events could originate in the bulk solvent and/or inside the emulsion droplets. These events helped overcome energy barriers to induce particle adsorption., (Copyright © 2018 Elsevier Inc. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
9. A multipurpose instrument for time-resolved ultra-small-angle and coherent X-ray scattering.
- Author
-
Narayanan T, Sztucki M, Van Vaerenbergh P, Léonardon J, Gorini J, Claustre L, Sever F, Morse J, and Boesecke P
- Abstract
This article presents the main technical features and performance of the upgraded beamline ID02 at the ESRF. The beamline combines different small-angle X-ray scattering techniques in one unique instrument, enabling static and kinetic investigations from ångström to micrometre size scales and time resolution down to the sub-millisecond range. The main component of the instrument is an evacuated detector tube of length 34 m and diameter 2 m. Several different detectors are housed inside a motorized wagon that travels along a rail system, allowing an automated change of the sample-detector distance from about 1 to 31 m as well as selection of the desired detector. For optional combined wide-angle scattering measurements, a wide-angle detector is installed at the entrance cone of the tube. A scattering vector (of magnitude q ) range of 0.002 ≤ q ≤ 50 nm
-1 is covered with two sample-detector distances and a single-beam setting for an X-ray wavelength of 1 Å. In the high-resolution mode, two-dimensional ultra-small-angle X-ray scattering patterns down to q < 0.001 nm-1 can be recorded, and the resulting one-dimensional profiles have superior quality as compared to those measured with an optimized Bonse-Hart instrument. In the highest-resolution mode, the beam is nearly coherent, thereby permitting multispeckle ultra-small-angle X-ray photon correlation spectroscopy measurements. The main applications of the instrument include the elucidation of static and transient hierarchical structures, and nonequilibrium dynamics in soft matter and biophysical systems.- Published
- 2018
- Full Text
- View/download PDF
10. Imaging with ultra-small-angle X-ray scattering using a Laue-case analyzer and its application to human breast tumors.
- Author
-
Shimao D, Sunaguchi N, Sasaya T, Yuasa T, Ichihara S, Kawasaki T, and Ando M
- Subjects
- Breast Neoplasms pathology, Humans, Breast Neoplasms diagnostic imaging, Molecular Imaging instrumentation, Scattering, Small Angle, X-Ray Diffraction
- Abstract
Purpose: In this study, we demonstrate a novel imaging technique, based on ultra-small-angle X-ray scattering (USAXS) that uses a Laue-case Si wafer as the angle analyzer., Methods: We utilized the (1 1 1) diffraction plane of a 356 μm thick, symmetrically cut Si wafer as the angle analyzer, denoted by A[L]. With this device, we performed USAXS imaging experiments using 19.8 keV synchrotron X-rays. The objects we imaged were formalin-fixed, paraffin-embedded breast tumors (an invasive carcinoma and an intraductal papilloma). During image acquisition by a charge-coupled device (CCD) camera, we varied the rotation angle of the analyzer in 0.02″ steps from -2.40″ to +2.40″ around the Bragg angle. The exposure time for each image was 2 s. We determined the amount of ultra-small-angle X-ray scattering from the width of the intensity curve obtained for each local pixel during the rotation of the analyzer., Results: We acquired USAXS images of malignant and benign breast tumor specimens using the A[L] analyzer; regions with larger USAXS form brighter areas in the image. We varied the sensitivity of the USAXS image by changing the threshold level of the object rocking curve., Conclusions: The USAXS images can provide information about the internal distribution of closely packed scattering bodies in a sample with reasonable sensitivity. This information differs from that obtainable through refraction-contrast imaging. Although further validation studies will be necessary, we conclude that USAXS imaging using a Laue-case analyzer may have significant potential as a new diagnosis technique., (Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
11. An in situ USAXS-SAXS-WAXS study of precipitate size distribution evolution in a model Ni-based alloy.
- Author
-
Andrews RN, Serio J, Muralidharan G, and Ilavsky J
- Abstract
Intermetallic γ' precipitates typically strengthen nickel-based superalloys. The shape, size and spatial distribution of strengthening precipitates critically influence alloy strength, while their temporal evolution characteristics determine the high-temperature alloy stability. Combined ultra-small-, small- and wide-angle X-ray scattering (USAXS-SAXS-WAXS) analysis can be used to evaluate the temporal evolution of an alloy's precipitate size distribution (PSD) and phase structure during in situ heat treatment. Analysis of PSDs from USAXS-SAXS data employs either least-squares fitting of a preordained PSD model or a maximum entropy (MaxEnt) approach, the latter avoiding a priori definition of a functional form of the PSD. However, strong low- q scattering from grain boundaries and/or structure factor effects inhibit MaxEnt analysis of typical alloys. This work describes the extension of Bayesian-MaxEnt analysis methods to data exhibiting structure factor effects and low- q power law slopes and demonstrates their use in an in situ study of precipitate size evolution during heat treatment of a model Ni-Al-Si alloy.
- Published
- 2017
- Full Text
- View/download PDF
12. Use of small-angle X-ray scattering to resolve intracellular structure changes of Escherichia coli cells induced by antibiotic treatment.
- Author
-
von Gundlach AR, Garamus VM, Willey TM, Ilavsky J, Hilpert K, and Rosenhahn A
- Abstract
The application of small-angle X-ray scattering (SAXS) to whole Escherichia coli cells is challenging owing to the variety of internal constituents. To resolve their contributions, the outer shape was captured by ultra-small-angle X-ray scattering and combined with the internal structure resolved by SAXS. Building on these data, a model for the major structural components of E. coli was developed. It was possible to deduce information on the occupied volume, occurrence and average size of the most important intracellular constituents: ribosomes, DNA and proteins. E. coli was studied after treatment with three different antibiotic agents (chloramphenicol, tetracycline and rifampicin) and the impact on the intracellular constituents was monitored.
- Published
- 2016
- Full Text
- View/download PDF
13. Digestibility and structural parameters of spray-dried casein clusters under simulated gastric conditions.
- Author
-
Jarunglumlert T, Nakagawa K, and Adachi S
- Abstract
The digestibility of casein clusters prepared from sodium caseinate solution (plain or pH-adjusted (pH=6.0)) was studied. The prepared solutions were spray-dried at different inlet air temperatures (150°C and 180°C), and the properties (i.e. encapsulation efficiency, surface hydrophobicity, and digestibility) of the resultant powders were investigated. The specimens obtained from the pH-adjusted solution had higher encapsulation efficiencies than the specimens obtained from the plain solution. A higher spray-drying temperature resulted in lower encapsulation efficiencies and higher surface hydrophobicities. Simulated gastric digestion tests were carried out to study the digestibility of the obtained casein clusters, which was analyzed in terms of reaction kinetics and structural changes during digestion. The effects of drying temperature and pH on the amount of casein digested were not significant; that is, approximately 30% of casein was digested in 120min for all specimens. Small-angle and ultra-small-angle X-ray scattering measurements were used to analyze the structure of the obtained clusters and their changes during digestion. The results suggested that all the obtained casein clusters, with an average size of approximately 428nm, had a rough, fractal-structured surface with many dense primary clusters. These structures changed during digestion; specifically, the cluster size increased both in the overall diameter and on the primary structure scale. The fractal characteristics changed from surface to mass fractals, and simultaneously, the cluster density decreased. The drying temperature affected the cluster size during digestion, and the trends were different in the specimens obtained from the plain and pH-adjusted solutions. These results could be useful in the design of protein-based encapsulation systems with desirable digestibility and bioavailability., (Copyright © 2015. Published by Elsevier Ltd.)
- Published
- 2015
- Full Text
- View/download PDF
14. Pinhole-type two-dimensional ultra-small-angle X-ray scattering on the micrometer scale.
- Author
-
Kishimoto H, Shinohara Y, Suzuki Y, Takeuchi A, Yagi N, and Amemiya Y
- Abstract
A pinhole-type two-dimensional ultra-small-angle X-ray scattering set-up at a so-called medium-length beamline at SPring-8 is reported. A long sample-to-detector distance, 160.5 m, can be used at this beamline and a small-angle resolution of 0.25 µm(-1) was thereby achieved at an X-ray energy of 8 keV.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.