Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. Departament d'Enginyeria de Serveis i Sistemes d'Informació, Universitat Politècnica de Catalunya. BIOCOM-SC - Biologia Computacional i Sistemes Complexos, Universitat Politècnica de Catalunya. inSSIDE - integrated Software, Services, Information and Data Engineering, Oliveira, Allisson Dantas de, Rubio Maturana, Carles, Zarzuela Serrat, Francesc, Carvalho, Bruno, Sulleiro Igual, Elena, Prats Soler, Clara, Veiga, Anna, Bosch, Mercedes, Zulueta Taboada, Javier, Abelló Gamazo, Alberto, Sayrol Clos, Elisa, Joseph Munné, Joan, López Codina, Daniel, Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. Departament d'Enginyeria de Serveis i Sistemes d'Informació, Universitat Politècnica de Catalunya. BIOCOM-SC - Biologia Computacional i Sistemes Complexos, Universitat Politècnica de Catalunya. inSSIDE - integrated Software, Services, Information and Data Engineering, Oliveira, Allisson Dantas de, Rubio Maturana, Carles, Zarzuela Serrat, Francesc, Carvalho, Bruno, Sulleiro Igual, Elena, Prats Soler, Clara, Veiga, Anna, Bosch, Mercedes, Zulueta Taboada, Javier, Abelló Gamazo, Alberto, Sayrol Clos, Elisa, Joseph Munné, Joan, and López Codina, Daniel
In a clinical context, conventional optical microscopy is commonly used for the visualization of biological samples for diagnosis. However, the availability of molecular techniques and rapid diagnostic tests are reducing the use of conventional microscopy, and consequently the number of experienced professionals starts to decrease. Moreover, the continuous visualization during long periods of time through an optical microscope could affect the final diagnosis results due to induced human errors and fatigue. Therefore, microscopy automation is a challenge to be achieved and address this problem. The aim of the study is to develop a low-cost automated system for the visualization of microbiological/parasitological samples by using a conventional optical microscope, and specially designed for its implementation in resource-poor settings laboratories. A 3D-prototype to automate the majority of conventional optical microscopes was designed. Pieces were built with 3D-printing technology and polylactic acid biodegradable material with Tinkercad/Ultimaker Cura 5.1 slicing softwares. The system’s components were divided into three subgroups: microscope stage pieces, storage/autofocus-pieces, and smartphone pieces. The prototype is based on servo motors, controlled by Arduino open-source electronic platform, to emulate the X-Y and auto-focus (Z) movements of the microscope. An average time of 27.00 ± 2.58 seconds is required to auto-focus a single FoV. Auto-focus evaluation demonstrates a mean average maximum Laplacian value of 11.83 with tested images. The whole automation process is controlled by a smartphone device, which is responsible for acquiring images for further diagnosis via convolutional neural networks. The prototype is specially designed for resource-poor settings, where microscopy diagnosis is still a routine process. The coalescence between convolutional neural network predictive models and the automation of the movements of a conventional optical microscope c, We acknowledge Dr. Dolors Canadell and Saint John of God Hospital (Lunsar, Sierra Leona). We acknowledge the Microbiology Department of Vall d’Hebron Universitary Hospital, and the Vall d’Hebron-Drassanes specialised centre in International Health, for its continuous advice, expertise, and infrastructure. The Computational Biology and Complex Systems Group, the Database Technologies and Information Systems Group and the Information and Image Processing Group of Universitat Politècnica de Catalunya (UPC). Special thanks to the Probitas Foundation and the Cooperation for Development Centre of UPC for their support in the implementation of the project. Thanks to the WHO for the holistic support regarding digital imaging diagnosis of haemoparasites in resource-poor settings., Objectius de Desenvolupament Sostenible::3 - Salut i Benestar::3.2 - Per a 2030, posar fi a les morts evitables de nounats i dels menors de 5 anys, aconseguint que tots els països intentin reduir la mortalitat neonatal almenys fins a 12 per cada 1.000 nascuts vius, i la mortalitat dels menors de 5 anys almenys fins a 25 per cada 1.000 nascuts vius, Objectius de Desenvolupament Sostenible::3 - Salut i Benestar::3.3 - Per a 2030, posar fi a les epidèmies de la sida, tuberculosi, malària i les malalties tropicals desateses, i combatre l’hepatitis, les malalties transmeses per l’aigua i altres malalties transmissibles, Objectius de Desenvolupament Sostenible::3 - Salut i Benestar::3.8 - Assolir la cobertura sanitària universal, en particular la protecció contra els riscos financers, l’accés a serveis de salut essencials de qualitat i l’accés a medicaments i vacunes segurs, eficaços, assequibles i de qualitat per a totes les persones, Objectius de Desenvolupament Sostenible::3 - Salut i Benestar, Postprint (published version)