108 results on '"front-end electronics for detector readout"'
Search Results
2. Development of the Continuous Readout Digitising Imager Array detector
- Author
-
Marras, A., Klujev, A., Lange, S., Laurus, T., Pennicard, D., Trunk, U., Wunderer, C. B., Krueger, H., Graafsma, Heinz, Marras, A., Klujev, A., Lange, S., Laurus, T., Pennicard, D., Trunk, U., Wunderer, C. B., Krueger, H., and Graafsma, Heinz
- Abstract
The CoRDIA project aims to develop an X-ray imager capable of continuous operation in excess of 100 kframe/s. The goal is to provide a suitable instrument for Photon Science experiments at diffraction-limited Synchrotron Rings and Free Electron Lasers considering Continuous Wave operation. Several chip prototypes were designed in a 65 nm process: in this paper we will present an overview of the challenges and solutions adopted in the ASIC design.
- Published
- 2024
- Full Text
- View/download PDF
3. Development of the Continuous Readout Digitising Imager Array detector
- Author
-
Marras, A., Klujev, A., Lange, S., Laurus, T., Pennicard, D., Trunk, U., Wunderer, C. B., Krueger, H., Graafsma, Heinz, Marras, A., Klujev, A., Lange, S., Laurus, T., Pennicard, D., Trunk, U., Wunderer, C. B., Krueger, H., and Graafsma, Heinz
- Abstract
The CoRDIA project aims to develop an X-ray imager capable of continuous operation in excess of 100 kframe/s. The goal is to provide a suitable instrument for Photon Science experiments at diffraction-limited Synchrotron Rings and Free Electron Lasers considering Continuous Wave operation. Several chip prototypes were designed in a 65 nm process: in this paper we will present an overview of the challenges and solutions adopted in the ASIC design.
- Published
- 2024
- Full Text
- View/download PDF
4. Development of the Continuous Readout Digitising Imager Array detector
- Author
-
Marras, A., Klujev, A., Lange, S., Laurus, T., Pennicard, D., Trunk, U., Wunderer, C. B., Krueger, H., Graafsma, Heinz, Marras, A., Klujev, A., Lange, S., Laurus, T., Pennicard, D., Trunk, U., Wunderer, C. B., Krueger, H., and Graafsma, Heinz
- Abstract
The CoRDIA project aims to develop an X-ray imager capable of continuous operation in excess of 100 kframe/s. The goal is to provide a suitable instrument for Photon Science experiments at diffraction-limited Synchrotron Rings and Free Electron Lasers considering Continuous Wave operation. Several chip prototypes were designed in a 65 nm process: in this paper we will present an overview of the challenges and solutions adopted in the ASIC design.
- Published
- 2024
- Full Text
- View/download PDF
5. Development of the Continuous Readout Digitising Imager Array detector
- Author
-
Marras, A., Klujev, A., Lange, S., Laurus, T., Pennicard, D., Trunk, U., Wunderer, C. B., Krueger, H., Graafsma, Heinz, Marras, A., Klujev, A., Lange, S., Laurus, T., Pennicard, D., Trunk, U., Wunderer, C. B., Krueger, H., and Graafsma, Heinz
- Abstract
The CoRDIA project aims to develop an X-ray imager capable of continuous operation in excess of 100 kframe/s. The goal is to provide a suitable instrument for Photon Science experiments at diffraction-limited Synchrotron Rings and Free Electron Lasers considering Continuous Wave operation. Several chip prototypes were designed in a 65 nm process: in this paper we will present an overview of the challenges and solutions adopted in the ASIC design.
- Published
- 2024
- Full Text
- View/download PDF
6. The triggerless data acquisition system of the XENONnT experiment
- Author
-
Aalbers, Jelle, Antochi, Vasile C., Conrad, Jan, Rosso, Andrea Gallo, Joy, Ashley, Mahlstedt, Jörn, Tan, Pueh-Leng, Aalbers, Jelle, Antochi, Vasile C., Conrad, Jan, Rosso, Andrea Gallo, Joy, Ashley, Mahlstedt, Jörn, and Tan, Pueh-Leng
- Abstract
The XENONnT detector uses the latest and largest liquid xenon-based time projection chamber (TPC) operated by the XENON Collaboration, aimed at detecting Weakly Interacting Massive Particles and conducting other rare event searches. The XENONnT data acquisition (DAQ) system constitutes an upgraded and expanded version of the XENON1T DAQ system. For its operation, it relies predominantly on commercially available hardware accompanied by open-source and custom-developed software. The three constituent subsystems of the XENONnT detector, the TPC (main detector), muon veto, and the newly introduced neutron veto, are integrated into a single DAQ, and can be operated both independently and as a unified system. In total, the DAQ digitizes the signals of 698 photomultiplier tubes (PMTs), of which 253 from the top PMT array of the TPC are digitized twice, at ×10 and ×0.5 gain. The DAQ for the most part is a triggerless system, reading out and storing every signal that exceeds the digitization thresholds. Custom-developed software is used to process the acquired data, making it available within ∼30 s for live data quality monitoring and online analyses. The entire system with all the three subsystems was successfully commissioned and has been operating continuously, comfortably withstanding readout rates that exceed ∼500 MB/s during calibration. Livetime during normal operation exceeds 99% and is ∼90% during most high-rate calibrations. The combined DAQ system has collected more than 2 PB of both calibration and science data during the commissioning of XENONnT and the first science run.
- Published
- 2023
- Full Text
- View/download PDF
7. AugerPrime surface detector electronics
- Author
-
Halim, Abdul A.A., Maris, Ioana Codrina, Zapparrata, Orazio, Halim, Abdul A.A., Maris, Ioana Codrina, and Zapparrata, Orazio
- Abstract
Operating since 2004, the Pierre Auger Observatory has led to major advances in our understanding of the ultra-high-energy cosmic rays. The latest findings have revealed new insights that led to the upgrade of the Observatory, with the primary goal of obtaining information on the primary mass of the most energetic cosmic rays on a shower-by-shower basis. In the framework of the upgrade, called AugerPrime, the 1660 water-Cherenkov detectors of the surface array are equipped with plastic scintillators and radio antennas, allowing us to enhance the composition sensitivity. To accommodate new detectors and to increase experimental capabilities, the electronics is also upgraded. This includes better timing with up-to-date GPS receivers, higher sampling frequency, increased dynamic range, and more powerful local processing of the data. In this paper, the design characteristics of the new electronics and the enhanced dynamic range will be described. The manufacturing and test processes will be outlined and the test results will be discussed. The calibration of the SD detector and various performance parameters obtained from the analysis of the first commissioning data will also be presented., 0, SCOPUS: ar.j, info:eu-repo/semantics/published
- Published
- 2023
8. Characterisation of the MUSIC ASIC for large-area silicon photomultipliers for gamma-ray astronomy
- Author
-
Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica, Universitat Politècnica de Catalunya. EFRICS - Efficient and Robust Integrated Circuits and Systems, De Angelis, Nicolas, Gascón Fora, David, Gómez Fernández, Sergio, Heller, Matthieu, Montaruli, Teresa, Nagai, Andrii, Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica, Universitat Politècnica de Catalunya. EFRICS - Efficient and Robust Integrated Circuits and Systems, De Angelis, Nicolas, Gascón Fora, David, Gómez Fernández, Sergio, Heller, Matthieu, Montaruli, Teresa, and Nagai, Andrii
- Abstract
Large-area silicon photomultipliers (SiPMs) are desired in many applications where large surfaces have to be covered. For instance, a large area SiPM has been developed by Hamamatsu Photonics in collaboration with the University of Geneva, to equip gamma-ray cameras employed in imaging atmospheric Cherenkov telescopes. The sensor being about 1 cm2, a suitable preamplification electronics has been investigated in this work, which can deal with long pulses induced by the large capacitance of the sensor. The so-called Multiple Use SiPM Integrated Circuit (MUSIC), developed by the ICCUB (University of Barcelona), is investigated as a potential front-end ASIC, suitable to cover large area photodetection planes of gamma-ray telescopes. The ASIC offers an interesting pole-zero cancellation (PZC) that allows dealing with long SiPM signals, the feature of active summation of up to 8 input channels into a single differential output and it can offer a solution for reducing power consumption compared to discrete solutions. Measurements and simulations of MUSIC coupled to two SiPMs developed by Hamamatsu are considered and the ASIC response is characterized., Postprint (published version)
- Published
- 2023
9. Current status of the end-of-substructure (EoS) card project for the ATLAS strip tracker upgrade using final ASICs
- Author
-
Boebel, A. L., Ceslik, H., Dam, M., Diez, S., Garvey, C., Goettlicher, P., Gregor, I. M., Keaveney, J. M., Van der Merwe, M. N., Oechsle, J., Schmitt, S., Stanitzki, M., Strom, L. R., Wyngaard, J. R., Boebel, A. L., Ceslik, H., Dam, M., Diez, S., Garvey, C., Goettlicher, P., Gregor, I. M., Keaveney, J. M., Van der Merwe, M. N., Oechsle, J., Schmitt, S., Stanitzki, M., Strom, L. R., and Wyngaard, J. R.
- Abstract
In the context of the high-luminosity upgrade of the LHC and ATLAS, the microstrip-tracking detector will be redesigned. The main building blocks are substructures with multiple sensors and their electronics. Each substructure will have a single interface to the off-detector system, the so-called End-of-Substructure (EoS) card. Its physical realisation is a set of printed circuit boards (PCBs). The PCB integrates ASICs and hybrids, which multiplex or demultipex the data and transmit with a rate up to 10 Gb/s or receive with a rate up to 2.5 Gb/s on optical fibres. These active parts are developed at CERN and are known as lpGBT and VTRx+. The EoS card integrates the active parts with the required electronics for the specified operation and within the mechanical constraints of the detector. In this paper critical design aspects such as the low-impedance powering scheme and the PCB setup are described. The EoS card has reached its final state for a series production, including the required setups for quality control. The achieved transmission quality on the 10 Gb/s links is presented.
- Published
- 2023
10. Current status of the end-of-substructure (EoS) card project for the ATLAS strip tracker upgrade using final ASICs
- Author
-
Boebel, A. L., Ceslik, H., Dam, M., Diez, S., Garvey, C., Goettlicher, P., Gregor, I. M., Keaveney, J. M., Van der Merwe, M. N., Oechsle, J., Schmitt, S., Stanitzki, M., Strom, L. R., Wyngaard, J. R., Boebel, A. L., Ceslik, H., Dam, M., Diez, S., Garvey, C., Goettlicher, P., Gregor, I. M., Keaveney, J. M., Van der Merwe, M. N., Oechsle, J., Schmitt, S., Stanitzki, M., Strom, L. R., and Wyngaard, J. R.
- Abstract
In the context of the high-luminosity upgrade of the LHC and ATLAS, the microstrip-tracking detector will be redesigned. The main building blocks are substructures with multiple sensors and their electronics. Each substructure will have a single interface to the off-detector system, the so-called End-of-Substructure (EoS) card. Its physical realisation is a set of printed circuit boards (PCBs). The PCB integrates ASICs and hybrids, which multiplex or demultipex the data and transmit with a rate up to 10 Gb/s or receive with a rate up to 2.5 Gb/s on optical fibres. These active parts are developed at CERN and are known as lpGBT and VTRx+. The EoS card integrates the active parts with the required electronics for the specified operation and within the mechanical constraints of the detector. In this paper critical design aspects such as the low-impedance powering scheme and the PCB setup are described. The EoS card has reached its final state for a series production, including the required setups for quality control. The achieved transmission quality on the 10 Gb/s links is presented.
- Published
- 2023
11. The Majorana Demonstrator readout electronics system
- Author
-
Abgrall, N, Abgrall, N, Amman, M, Arnquist, IJ, Avignone, FT, Barabash, AS, Barton, CJ, Barton, PJ, Bertrand, FE, Bhimani, KH, Bos, B, Bradley, AW, Burritt, TH, Busch, M, Buuck, M, Caldwell, TS, Chan, YD, Christofferson, CD, Chu, PH, Clark, ML, Cooper, RJ, Cuesta, C, Detwiler, JA, Drobizhev, A, Edwins, DW, Efremenko, Y, Ejiri, H, Elliott, SR, Gilliss, T, Giovanetti, GK, Green, MP, Gruszko, J, Guinn, IS, Guiseppe, VE, Haufe, CR, Hegedus, RJ, Henning, R, Hervas Aguilar, D, Hoppe, EW, Hostiuc, A, Kidd, MF, Kim, I, Kouzes, RT, Li, A, Loach, JC, Lopez, AM, López-Castaño, JM, Luke, PN, Martin, EL, Martin, RD, Massarczyk, R, Meijer, SJ, Mertens, S, Myslik, J, Oli, TK, Othman, G, Peterson, D, Pettus, W, Poon, AWP, Radford, DC, Rager, J, Reine, AL, Rielage, K, Robertson, RGH, Ruof, NW, Sayki, B, Stortini, MJ, Tedeschi, D, Turqueti, M, Van Wechel, TD, Varner, RL, Vasilyev, S, Vetter, K, Wilkerson, JF, Wiseman, C, Xu, W, Yaver, H, Yu, CH, Zhu, BX, Zimmermann, S, Abgrall, N, Abgrall, N, Amman, M, Arnquist, IJ, Avignone, FT, Barabash, AS, Barton, CJ, Barton, PJ, Bertrand, FE, Bhimani, KH, Bos, B, Bradley, AW, Burritt, TH, Busch, M, Buuck, M, Caldwell, TS, Chan, YD, Christofferson, CD, Chu, PH, Clark, ML, Cooper, RJ, Cuesta, C, Detwiler, JA, Drobizhev, A, Edwins, DW, Efremenko, Y, Ejiri, H, Elliott, SR, Gilliss, T, Giovanetti, GK, Green, MP, Gruszko, J, Guinn, IS, Guiseppe, VE, Haufe, CR, Hegedus, RJ, Henning, R, Hervas Aguilar, D, Hoppe, EW, Hostiuc, A, Kidd, MF, Kim, I, Kouzes, RT, Li, A, Loach, JC, Lopez, AM, López-Castaño, JM, Luke, PN, Martin, EL, Martin, RD, Massarczyk, R, Meijer, SJ, Mertens, S, Myslik, J, Oli, TK, Othman, G, Peterson, D, Pettus, W, Poon, AWP, Radford, DC, Rager, J, Reine, AL, Rielage, K, Robertson, RGH, Ruof, NW, Sayki, B, Stortini, MJ, Tedeschi, D, Turqueti, M, Van Wechel, TD, Varner, RL, Vasilyev, S, Vetter, K, Wilkerson, JF, Wiseman, C, Xu, W, Yaver, H, Yu, CH, Zhu, BX, and Zimmermann, S
- Abstract
The Majorana Demonstrator comprises two arrays of high-purity germanium detectors constructed to search for neutrinoless double-beta decay in 76Ge and other physics beyond the Standard Model. Its readout electronics were designed to have low electronic noise, and radioactive backgrounds were minimized by using low-mass components and low-radioactivity materials near the detectors. This paper provides a description of all components of the Majorana Demonstrator readout electronics, spanning the front-end electronics and internal cabling, back-end electronics, digitizer, and power supplies, along with the grounding scheme. The spectroscopic performance achieved with these readout electronics is also demonstrated.
- Published
- 2022
12. Cryogenic front-end amplifier design for large SiPM arrays in the DUNE FD1-HD photon detection system
- Author
-
Brizzolari, C, Carniti, P, Cattadori, C, Cristaldo, E, de la Torre Rojo, A, Delgado, M, Falcone, A, Francis, K, Gallice, N, Gotti, C, Guarise, M, Montagna, E, Montanari, A, Pessina, G, Pozzato, M, Smolik, J, Terranova, F, Tomassetti, L, Verdugo de Osa, A, Warner, D, Zalesak, J, Zani, A, Zuklin, J, Zutshi, V, Brizzolari, C., Carniti, P., Cattadori, C., Cristaldo, E., de la Torre Rojo, A., Delgado, M., Falcone, A., Francis, K., Gallice, N., Gotti, C., Guarise, M., Montagna, E., Montanari, A., Pessina, G., Pozzato, M., Smolik, J., Terranova, F., Tomassetti, L., Verdugo de Osa, A., Warner, D., Zalesak, J., Zani, A., Zuklin, J., Zutshi, V., Brizzolari, C, Carniti, P, Cattadori, C, Cristaldo, E, de la Torre Rojo, A, Delgado, M, Falcone, A, Francis, K, Gallice, N, Gotti, C, Guarise, M, Montagna, E, Montanari, A, Pessina, G, Pozzato, M, Smolik, J, Terranova, F, Tomassetti, L, Verdugo de Osa, A, Warner, D, Zalesak, J, Zani, A, Zuklin, J, Zutshi, V, Brizzolari, C., Carniti, P., Cattadori, C., Cristaldo, E., de la Torre Rojo, A., Delgado, M., Falcone, A., Francis, K., Gallice, N., Gotti, C., Guarise, M., Montagna, E., Montanari, A., Pessina, G., Pozzato, M., Smolik, J., Terranova, F., Tomassetti, L., Verdugo de Osa, A., Warner, D., Zalesak, J., Zani, A., Zuklin, J., and Zutshi, V.
- Abstract
The photon detection system of the first far detector (FD1-HD) of the DUNE experiment will detect scintillation photons produced by particle interactions in a kiloton-scale liquid Argon time projection chamber. The photon detectors of choice are silicon photomultipliers (SiPM), 6×6 mm2 each, arranged in groups of 48, which present a significantly low impedance to the front-end electronics. This paper details the design of a cryogenic amplifier with exceptionally low white voltage noise of 0.37 nV√(Hz), based on a silicon-germanium input transistor and a BiCMOS fully differential operational amplifier. It yields excellent single photoelectron resolution even at low overvoltage values. The signal rise time is below 100 ns, and the dynamic range is about 2000 photoelectrons at the typical operating overvoltage. It draws 0.7 mA from a single 3.3 V supply, for a power consumption of 2.4 mW per channel. Simplified models were developed to predict the single photolectron signal shape and the signal to noise ratio, with a good match to measured performance.
- Published
- 2022
13. FastIC: a fast integrated circuit for the readout of high performance detectors
- Author
-
Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica, Universitat Politècnica de Catalunya. HIPICS - Grup de Circuits i Sistemes Integrats d'Altes Prestacions, Gómez Fernández, Sergio, Alozy, J., Campbell, Michael, Manera Escalero, Rafael, Mauricio Ferré, Juan, Sanmukh, Anand, Sanuy Charles, Andreu, Ballabriga, Rafael, Gascón Fora, David, Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica, Universitat Politècnica de Catalunya. HIPICS - Grup de Circuits i Sistemes Integrats d'Altes Prestacions, Gómez Fernández, Sergio, Alozy, J., Campbell, Michael, Manera Escalero, Rafael, Mauricio Ferré, Juan, Sanmukh, Anand, Sanuy Charles, Andreu, Ballabriga, Rafael, and Gascón Fora, David
- Abstract
This work presents the 8-channel FastIC ASIC developed in CMOS 65¿nm technology suitable for the readout of positive and negative polarity sensors in high energy physics experiments, Cherenkov detectors and time-of-flight systems. The front-end can be configured to perform analog summation of up to 4 single-ended channels before discrimination in view of improving time resolution when segmenting a SiPM. The outputs encode the time-of-arrival information and linear energy measurement which captures the peak amplitude of the input signal in the 5 µA–25 mA input peak current range. Power consumption of the ASIC is 12 mW/ch with default settings. Measurements of single photon time resolution with a red-light laser source and a HPK SiPM S13360-3050CS are ˜140¿ps FWHM., Postprint (author's final draft)
- Published
- 2022
14. A 4-channel front-end electronics for muon drift tubes detectors in 65 nm CMOS technology
- Author
-
Shah, S, De Matteis, M, Fras, M, Kortner, O, Kroha, H, Richter, R, Baschirotto, A, Shah S. A. A., De Matteis M., Fras M., Kortner O., Kroha H., Richter R., Baschirotto A., Shah, S, De Matteis, M, Fras, M, Kortner, O, Kroha, H, Richter, R, Baschirotto, A, Shah S. A. A., De Matteis M., Fras M., Kortner O., Kroha H., Richter R., and Baschirotto A.
- Abstract
A 4-channel front-end electronics chip in 65 nm CMOS technology (ASD65 nm) for muon drift tube chambers at high background counting rates in the ATLAS detector at High-Luminosity LHC and in future high-energy collider experiments is presented. Each channel of the ASD65 nm chip is a mixed-signal processing circuit consisting of a Charge Sensitive Preamplifier (CSP), a two-stage shaper, and a timing discriminator. The CSP exhibits a peaking time of 11 ns and a sensitivity of 1.1 mV/fC. The peaking time of the full analog chain is 14.6 ns. The minimum signal-to-noise ratio of the channel is 15 dB for the minimum input charge of 5 fC, and it rises to 40.5 dB for the maximum input charge of 100 fC. At the output, the time representation of input signal is provided in both, CMOS level as well as low-voltage-differential-signal. Each channel consumes a current of 10.6 mA from a single 1.2 V supply, and occupies an area of 0.235 mm2. The specified performance parameters of the ASD65 nm have been achieved for 60 pF parasitic capacitance of the detector connected the input terminal.
- Published
- 2022
15. Design, production, burn-in and tests of the hybrid circuits of the Upstream Tracker at the LHCb detector
- Author
-
Citterio, M, Conti, N, De Benedetti, F, Gandini, P, Merli, A, Neri, N, Petruzzo, M, Spadaro Norella, E, Citterio M., Conti N., De Benedetti F., Gandini P., Merli A., Neri N., Petruzzo M., Spadaro Norella E., Citterio, M, Conti, N, De Benedetti, F, Gandini, P, Merli, A, Neri, N, Petruzzo, M, Spadaro Norella, E, Citterio M., Conti N., De Benedetti F., Gandini P., Merli A., Neri N., Petruzzo M., and Spadaro Norella E.
- Abstract
We present a description of the design process, prototyping and production of the hybrid circuits for the front-end electronics of the Upstream Tracker at LHCb. The multilayer polyamide-based printed circuit boards, or hybrids, are designed to host the front-end ASICs. The ASICs require an optimized power delivery network from 0 to 120 MHz, with a maximum of 10-2 Ohms round-trip resistance, and 100 Ohms differential traces. Hybrids are required to have minimal radiation length, and to withstand the harsh environmental conditions of the data taking through intrinsic radiation hardness characteristics.
- Published
- 2022
16. The JUNO experiment and its electronics readout system
- Author
-
Petitjean, Pierre-Alexandre, Clerbaux, Barbara, Colomer Molla, Marta, Yifan, Yang, Petitjean, Pierre-Alexandre, Clerbaux, Barbara, Colomer Molla, Marta, and Yifan, Yang
- Abstract
The main goal of the Jiangmen Underground Neutrino Observatory (JUNO) under construction in China is to determine the neutrino mass hierarchy and to measure oscillation parameters to the sub-percent level. The detector consists of 20 ktons of liquid scintillator instrumented by 17612 20-inch photo-multiplier tubes, and 25600 3-inch small PMTs, with photo-cathode coverage of 77%. The electronics system is separated into two main parts. The front-end system, sitting under water, performs analog signal processing. The back-end electronics system, sitting outside water, consists of the DAQ and the trigger. The current production status of the experiment as well as the design of the electronics system will be reported in the presentation., on behalf of JUNO collaboration, SCOPUS: ar.j, info:eu-repo/semantics/published
- Published
- 2022
17. Recent results from the first lpGBT-based prototypes of the end-of-substructure card for the ATLAS Strip Tracker Upgrade
- Author
-
Boebel, A., Ceslik, H., Dam, M., Diez Cornell, S., Gregor, I., Goettlicher, P., Keaveney, J., Naidoo, J., Nikoi Van Der Merwe, M., Oechsle, J., Schmitt, S., Stanitzki, M., Ström, R., Wyngaard, J., Boebel, A., Ceslik, H., Dam, M., Diez Cornell, S., Gregor, I., Goettlicher, P., Keaveney, J., Naidoo, J., Nikoi Van Der Merwe, M., Oechsle, J., Schmitt, S., Stanitzki, M., Ström, R., and Wyngaard, J.
- Abstract
The building blocks of the upgraded ATLAS Strip Tracker for HL-LHC are modules that host silicon sensors and front-end ASICs. The modules are mounted on carbon-fibre substructures hosting up to 14 modules per side. An End-of-Substructure (EoS) card on each substructure side connects up to 28 differential data lines at 640 Mbit/s to lpGBT and VTRx+ ASICs that provide data serialisation and 10 Gbit/s optical data transmission to the off-detector systems respectively. Prototype EoS cards have been designed and extensively tested using lpGBT and VTRx+ prototypes. The status of the electronics design and recent test results are presented.
- Published
- 2022
18. A readout system for microwave kinetic inductance detectors using software defined radios
- Author
-
Shafiee, Mehdi, Fedorov, D., Grossan, Bruce, Kizheppatt, V., Smoot, George Fitzgerald, Shafiee, Mehdi, Fedorov, D., Grossan, Bruce, Kizheppatt, V., and Smoot, George Fitzgerald
- Abstract
Microwave kinetic inductance detectors (MKIDs) are typically readout using custom high-speed electronics and firmware, a challenging and time-intensive undertaking. We have developed a readout system for these devices using a software defined radio (SDR), a software implementation of radiofrequency signal processing. The SDR allows use of pre-existing software libraries and minimizes specialized firmware coding, a significant reduction in effort. We customized our SDR to readout mm and optical band MKIDs with resonant frequencies of 1.8-2 GHz and 2-2.2 GHz respectively. We used this readout system to measure the sensitivity of our MKIDs devices to visible light. We show that SDRs are a good candidate for small pixel count MKIDs readout systems, and make recommendations for readout systems for larger Pixel count arrays. © 2021 IOP Publishing Ltd and Sissa Medialab.
- Published
- 2021
19. A readout system for microwave kinetic inductance detectors using software defined radios
- Author
-
Shafiee, Mehdi, Fedorov, D., Grossan, Bruce, Kizheppatt, V., Smoot, George Fitzgerald, Shafiee, Mehdi, Fedorov, D., Grossan, Bruce, Kizheppatt, V., and Smoot, George Fitzgerald
- Abstract
Microwave kinetic inductance detectors (MKIDs) are typically readout using custom high-speed electronics and firmware, a challenging and time-intensive undertaking. We have developed a readout system for these devices using a software defined radio (SDR), a software implementation of radiofrequency signal processing. The SDR allows use of pre-existing software libraries and minimizes specialized firmware coding, a significant reduction in effort. We customized our SDR to readout mm and optical band MKIDs with resonant frequencies of 1.8-2 GHz and 2-2.2 GHz respectively. We used this readout system to measure the sensitivity of our MKIDs devices to visible light. We show that SDRs are a good candidate for small pixel count MKIDs readout systems, and make recommendations for readout systems for larger Pixel count arrays. © 2021 IOP Publishing Ltd and Sissa Medialab.
- Published
- 2021
20. The CGEM-IT readout chain
- Author
-
Amoroso, A., Baldini Ferroli, R., Balossino, I., Bertani, M., Bettoni, D., Bianchi, F., Bortone, A., Bugalho, R., Calcaterra, A., Cerioni, S., Chiozzi, S., Cibinetto, G., Cotta Ramusino, A., Cossio, F., Rolo, M. Da Rocha, De Mori, F., Destefanis, M., Di Francesco, A., Evangelisti, F., Farinelli, R., Fava, L., Felici, G., Garbolino, S., Garzia, I., Gatta, M., Giraudo, G., Gramigna, S., Greco, M., Lavezzi, L., Maggiora, M., Malaguti, R., Mangoni, A., Marcello, S., Marciniewski, Pawel, Melchiorri, M., Mezzadri, G., Mignone, M., Morgante, S., Pace, E., Pacetti, S., Patteri, P., Rivetti, A., Scodeggio, M., Sosio, S., Spataro, S., Varela, J., Wheadon, R., Amoroso, A., Baldini Ferroli, R., Balossino, I., Bertani, M., Bettoni, D., Bianchi, F., Bortone, A., Bugalho, R., Calcaterra, A., Cerioni, S., Chiozzi, S., Cibinetto, G., Cotta Ramusino, A., Cossio, F., Rolo, M. Da Rocha, De Mori, F., Destefanis, M., Di Francesco, A., Evangelisti, F., Farinelli, R., Fava, L., Felici, G., Garbolino, S., Garzia, I., Gatta, M., Giraudo, G., Gramigna, S., Greco, M., Lavezzi, L., Maggiora, M., Malaguti, R., Mangoni, A., Marcello, S., Marciniewski, Pawel, Melchiorri, M., Mezzadri, G., Mignone, M., Morgante, S., Pace, E., Pacetti, S., Patteri, P., Rivetti, A., Scodeggio, M., Sosio, S., Spataro, S., Varela, J., and Wheadon, R.
- Abstract
An innovative Cylindrical Gas Electron Multiplier (CGEM) detector is under construction for the upgrade of the inner tracker of the BESIII experiment. A novel system has been worked out for the readout of the CGEM detector, including a new ASIC, dubbed TIGER -Torino Integrated GEM Electronics for Readout, designed for the amplification and digitization of the CGEM output signals. The data output by TIGER are collected and processed by a first FPGA-based module, GEM Read Out Card, in charge of configuration and control of the front-end ASICs. A second FPGA-based module, named GEM Data Concentrator, builds the trigger selected event packets containing the data and stores them via the main BESIII data acquisition system. The design of the electronics chain, including the power and signal distribution, will be presented together with its performance.
- Published
- 2021
- Full Text
- View/download PDF
21. Comparative evaluation of analogue front-end designs for the CMS Inner Tracker at the High Luminosity LHC
- Author
-
Adam, W, Bergauer, T, Bloch, D, Dragicevic, M, Fruhwirth, R, Hinger, V, Steininger, H, Beaumont, W, Di Croce, D, Janssen, X, Kello, T, Lelek, A, Van Mechelen, P, Van Putte, S, Van Remortel, N, Blekman, F, Delcourt, M, D'Hondt, J, Lowette, S, Moortgat, S, Morton, A, Muller, D, Sahasransu, A, S rensen Bols, E, Allard, Y, Beghin, D, Bilin, B, Clerbaux, B, De Lentdecker, G, Deng, W, Favart, L, Grebenyuk, A, Hohov, D, Kalsi, A, Khalilzadeh, A, Mahdavikhorrami, M, Makarenko, I, Moureaux, L, Popov, A, Postiau, N, Robert, F, Song, Z, Thomas, L, Vanlaer, P, Vannerom, D, Wang, Q, Wang, H, Yang, Y, Bethani, A, Bruno, G, Bury, F, Caputo, C, David, P, Deblaere, A, Delaere, C, Donertas, I, Giammanco, A, Lemaitre, V, Mondal, K, Prisciandaro, J, Szilasi, N, Taliercio, A, Teklishyn, M, Vischia, P, Wertz, S, Brigljevic, V, Ferencek, D, Majumder, D, Mishra, S, Roguljic, M, Starodumov, A, Susa, T, Eerola, P, Brucken, E, Lampen, T, Martikainen, L, Tuominen, E, Luukka, P, Tuuva, T, Agram, J, Andrea, J, Apparu, D, Bonnin, C, Bourgatte, G, Brom, J, Chabert, E, Charles, L, Collard, C, Dangelser, E, Darej, D, Goerlach, U, Grimault, C, Gross, L, Haas, C, Krauth, M, Nibigira, E, Ollivier-Henry, N, Silva Jimenez, E, Asilar, E, Baulieu, G, Boudoul, G, Caponetto, L, Chanon, N, Contardo, D, Dene, P, Dupasquier, T, Galbit, G, Jain, S, Lumb, N, Mirabito, L, Nodari, B, Perries, S, Vander Donckt, M, Viret, S, Feld, L, Karpinski, W, Klein, K, Lipinski, M, Louis, D, Meuser, D, Pauls, A, Pierschel, G, Rauch, M, Rowert, N, Schulz, J, Teroerde, M, Wlochal, M, Dziwok, C, Fluegge, G, Pooth, O, Stahl, A, Ziemons, T, Cheng, C, Connor, P, De Wit, A, Eckerlin, G, Eckstein, D, Gallo, E, Guthoff, M, Harb, A, Kleinwort, C, Mankel, R, Maser, H, Meyer, M, Muhl, C, Mussgiller, A, Otarid, Y, Pitzl, D, Reichelt, O, Savitskyi, M, Stever, R, Tonon, N, Velyka, A, Walsh, R, Zuber, A, Benecke, A, Biskop, H, Buhmann, P, Eich, M, Feindt, F, Froehlich, A, Garutti, E, Gunnellini, P, Hajheidari, M, Haller, J, Hinzmann, A, Jabusch, H, Kasieczka, G, Klanner, R, Kutzner, V, Lange, T, Martens, S, Mrowietz, M, Niemeyer, C, Nissan, Y, Pena, K, Rieger, O, Schleper, P, Schwandt, J, Schwarz, D, Sonneveld, J, Steinbruck, G, Tews, A, Vormwald, B, Wellhausen, J, Zoi, I, Abbas, M, Ardila, L, Balzer, M, Barvich, T, Blank, T, Butz, E, Caselle, M, De Boer, W, Dierlamm, A, Droll, A, El Morabit, K, Hartmann, F, Husemann, U, Koppenhofer, R, Maier, S, Mallows, S, Mehner, T, Metzler, M, Muller-Gosewisch, J, Muller, T, Neufeld, M, Nurnberg, A, Sander, O, Schroder, M, Shvetsov, I, Simonis, H, Stanulla, J, Steck, P, Wassmer, M, Weber, M, Weddigen, A, Wittig, F, Anagnostou, G, Assiouras, P, Daskalakis, G, Kazas, I, Kyriakis, A, Loukas, D, Balazs, T, Marton, K, Sikler, F, Veszpremi, V, Das, A, Kar, C, Mal, P, Mohanty, R, Saha, P, Swain, S, Bhardwaj, A, Jain, C, Jain, G, Kumar, A, Ranjan, K, Saumya, S, Bhattacharya, R, Dutta, S, Palit, P, Saha, G, Sarkar, S, Cariola, P, Creanza, D, De Palma, M, De Robertis, G, Fiore, L, Ince, M, Loddo, F, Maggi, G, Martiradonna, S, Mongelli, M, My, S, Selvaggi, G, Silvestris, L, Albergo, S, Costa, S, Di Mattia, A, Potenza, R, Saizu, M, Tricomi, A, Tuve, C, Barbagli, G, Brianzi, M, Cassese, A, Ceccarelli, R, Ciaranfi, R, Ciulli, V, Civinini, C, D'Alessandro, R, Fiori, F, Focardi, E, Latino, G, Lenzi, P, Lizzo, M, Meschini, M, Paoletti, S, Seidita, R, Sguazzoni, G, Viliani, L, Ferro, F, Robutti, E, Brivio, F, Dinardo, M, Dini, P, Gennai, S, Guzzi, L, Malvezzi, S, Menasce, D, Moroni, L, Pedrini, D, Zuolo, D, Azzi, P, Bacchetta, N, Bortignon, P, Bisello, D, Dorigo, T, Tosi, M, Yarar, H, Gaioni, L, Manghisoni, M, Ratti, L, Re, V, Riceputi, E, Traversi, G, Asenov, P, Baldinelli, G, Bianchi, F, Bilei, G, Bizzaglia, S, Caprai, M, Checcucci, B, Ciangottini, D, Fan, L, Farnesini, L, Ionica, M, Magherini, M, Mantovani, G, Mariani, V, Menichelli, M, Morozzi, A, Moscatelli, F, Passeri, D, Piccinelli, A, Placidi, P, Rossi, A, Santocchia, A, Spiga, D, Storchi, L, Tedeschi, T, Turrioni, C, Azzurri, P, Bagliesi, G, Basti, A, Beccherle, R, Bertacchi, V, Bianchini, L, Boccali, T, Bosi, F, Castaldi, R, Ciocci, M, Dell'Orso, R, Donato, S, Giassi, A, Grippo, M, Ligabue, F, Magazzu, G, Manca, E, Mandorli, G, Massa, M, Mazzoni, E, Messineo, A, Moggi, A, Morsani, F, Palla, F, Parolia, S, Raffaelli, F, Ramirez Sanchez, G, Rizzi, A, Roy Chowdhury, S, Spagnolo, P, Tenchini, R, Tonelli, G, Venturi, A, Verdini, P, Bellan, R, Coli, S, Costa, M, Covarelli, R, Dellacasa, G, Demaria, N, Garbolino, S, Migliore, E, Monteil, E, Monteno, M, Ortona, G, Pacher, L, Rivetti, A, Solano, A, Vagnerini, A, Duarte Campderros, J, Fernandez, M, Garcia Alonso, A, Gomez, G, Gonzalez Sanchez, F, Jaramillo Echeverria, R, Moya, D, Ruiz Jimeno, A, Scodellaro, L, Vila, I, Virto, A, Vizan Garcia, J, Abbaneo, D, Ahmed, I, Albert, E, Almeida, J, Barinoff, M, Batista Lopes, J, Bergamin, G, Blanchot, G, Boyer, F, Caratelli, A, Carnesecchi, R, Ceresa, D, Christiansen, J, Cichy, K, Curras Rivera, E, Daguin, J, Detraz, S, Dudek, M, Emriskova, N, Faccio, F, Frank, N, French, T, Hollos, A, Hugo, G, Kaplon, J, Kerekes, Z, Kloukinas, K, Koss, N, Kottelat, L, Koukola, D, Kovacs, M, La Rosa, A, Lenoir, P, Loos, R, Marchioro, A, Mateos Dominguez, I, Mersi, S, Michelis, S, Millet, A, Onnela, A, Orfanelli, S, Pakulski, T, Papadopoulos, A, Perez, A, Perez Gomez, F, Pernot, J, Petagna, P, Piazza, Q, Rose, P, Scarf, S, Sinani, M, Tavares Rego, R, Tropea, P, Troska, J, Tsirou, A, Vasey, F, Vichoudis, P, Zografos, A, Bertl, W, Caminada, L, Ebrahimi, A, Erdmann, W, Horisberger, R, Kaestli, H, Kotlinski, D, Langenegger, U, Meier, B, Missiroli, M, Noehte, L, Rohe, T, Streuli, S, Androsov, K, Backhaus, M, Becker, R, Berger, P, Di Calafiori, D, Calandri, A, Djambazov, L, Donega, M, Dorfer, C, Glessgen, F, Grab, C, Hits, D, Lustermann, W, Meinhard, M, Perovic, V, Reichmann, M, Ristic, B, Roeser, U, Ruini, D, Sorensen, J, Wallny, R, Bosiger, K, Brzhechko, D, Canelli, F, Cormier, K, Del Burgo, R, Huwiler, M, Jofrehei, A, Kilminster, B, Leontsinis, S, Macchiolo, A, Molinatti, U, Maier, R, Mikuni, V, Neutelings, I, Reimers, A, Robmann, P, Takahashi, Y, Wolf, D, Chen, P, Hou, W, Lu, R, Clement, E, Cussans, D, Goldstein, J, Seif El Nasr-Storey, S, Stylianou, N, Coughlan, J, Harder, K, Holmberg, M, Manolopoulos, K, Schuh, T, Tomalin, I, Bainbridge, R, Borg, J, Brown, C, Fedi, G, Hall, G, Monk, D, Pesaresi, M, Uchida, K, Coldham, K, Cole, J, Ghorbani, M, Khan, A, Kyberd, P, Reid, I, Bartek, R, Dominguez, A, Uniyal, R, Vargas Hernandez, A, Benelli, G, Burkle, B, Coubez, X, Heintz, U, Hinton, N, Hogan, J, Honma, A, Korotkov, A, Li, D, Lukasik, M, Narain, M, Sagir, S, Simpson, F, Spencer, E, Usai, E, Voelker, J, Wong, W, Zhang, W, Cannaert, E, Chertok, M, Conway, J, Haza, G, Hemer, D, Jensen, F, Thomson, J, Wei, W, Welton, T, Yohay, R, Zhang, F, Hanson, G, Si, W, Chang, P, Cooperstein, S, Deelen, N, Gerosa, R, Giannini, L, Krutelyov, S, Sathia, B, Sharma, V, Tadel, M, Yagil, A, Dutta, V, Gouskos, L, Incandela, J, Kilpatrick, M, Kyre, S, Qu, H, Quinnan, M, Cumalat, J, Ford, W, Macdonald, E, Perloff, A, Stenson, K, Ulmer, K, Wagner, S, Alexander, J, Bordlemay Padilla, Y, Bright-Thonney, S, Cheng, Y, Cranshaw, D, Datta, A, Filenius, A, Hogan, S, Lantz, S, Monroy, J, Postema, H, Quach, D, Reichert, J, Reid, M, Riley, D, Ryd, A, Smolenski, K, Strohman, C, Thom, J, Wittich, P, Zou, R, Bakshi, A, Berry, D, Burkett, K, Butler, D, Canepa, A, Derylo, G, Dickinson, J, Ghosh, A, Gingu, C, Gonzalez, H, Grunendahl, S, Horyn, L, Johnson, M, Klabbers, P, Lei, C, Lipton, R, Los, S, Merkel, P, Murat, P, Nahn, S, Ravera, F, Rivera, R, Spiegel, L, Uplegger, L, Voirin, E, Weber, H, Becerril Gonzalez, H, Chen, X, Dittmer, S, Evdokimov, A, Evdokimov, O, Gerber, C, Hofman, D, Mills, C, Roy, T, Rudrabhatla, S, Yoo, J, Alhusseini, M, Durgut, S, Nachtman, J, Onel, Y, Rude, C, Snyder, C, Yi, K, Amram, O, Eminizer, N, Gritsan, A, Kyriacou, S, Maksimovic, P, Mantilla Suarez, C, Roskes, J, Swartz, M, Vami, T, Anguiano, J, Bean, A, Khalil, S, Schmitz, E, Wilson, G, Ivanov, A, Mitchell, T, Modak, A, Taylor, R, Acosta, J, Cremaldi, L, Oliveros, S, Perera, L, Summers, D, Bloom, K, Claes, D, Fangmeier, C, Golf, F, Joo, C, Kravchenko, I, Siado, J, Iashvili, I, Kharchilava, A, Mclean, C, Nguyen, D, Pekkanen, J, Rappoccio, S, Albert, A, Demiragli, Z, Gastler, D, Hazen, E, Peck, A, Rohlf, J, Li, J, Parker, A, Skinnari, L, Hahn, K, Liu, Y, Sung, K, Cardwell, B, Francis, B, Hill, C, Wei, K, Malik, S, Norberg, S, Ramirez Vargas, J, Chawla, R, Das, S, Jones, M, Jung, A, Koshy, A, Negro, G, Thieman, J, Cheng, T, Dolen, J, Parashar, N, Ecklund, K, Freed, S, Liu, H, Nussbaum, T, Demina, R, Dulemba, J, Hindrichs, O, Bartz, E, Gandrakotra, A, Gershtein, Y, Halkiadakis, E, Hart, A, Lath, A, Nash, K, Osherson, M, Schnetzer, S, Stone, R, Eusebi, R, D'Angelo, P, Johns, W, Adam W., Bergauer T., Bloch D., Dragicevic M., Fruhwirth R., Hinger V., Steininger H., Beaumont W., Di Croce D., Janssen X., Kello T., Lelek A., Van Mechelen P., Van Putte S., Van Remortel N., Blekman F., Delcourt M., D'Hondt J., Lowette S., Moortgat S., Morton A., Muller D., Sahasransu A. R., S rensen Bols E., Allard Y., Beghin D., Bilin B., Clerbaux B., De Lentdecker G., Deng W., Favart L., Grebenyuk A., Hohov D., Kalsi A., Khalilzadeh A., Mahdavikhorrami M., Makarenko I., Moureaux L., Popov A., Postiau N., Robert F., Song Z., Thomas L., Vanlaer P., Vannerom D., Wang Q., Wang H., Yang Y., Bethani A., Bruno G., Bury F., Caputo C., David P., Deblaere A., Delaere C., Donertas I. S., Giammanco A., Lemaitre V., Mondal K., Prisciandaro J., Szilasi N., Taliercio A., Teklishyn M., Vischia P., Wertz S., Brigljevic V., Ferencek D., Majumder D., Mishra S., Roguljic M., Starodumov A., Susa T., Eerola P., Brucken E., Lampen T., Martikainen L., Tuominen E., Luukka P., Tuuva T., Agram J. -L., Andrea J., Apparu D., Bonnin C., Bourgatte G., Brom J. -M., Chabert E., Charles L., Collard C., Dangelser E., Darej D., Goerlach U., Grimault C., Gross L., Haas C., Krauth M., Nibigira E., Ollivier-Henry N., Silva Jimenez E., Asilar E., Baulieu G., Boudoul G., Caponetto L., Chanon N., Contardo D., Dene P., Dupasquier T., Galbit G., Jain S., Lumb N., Mirabito L., Nodari B., Perries S., Vander Donckt M., Viret S., Feld L., Karpinski W., Klein K., Lipinski M., Louis D., Meuser D., Pauls A., Pierschel G., Rauch M., Rowert N., Schulz J., Teroerde M., Wlochal M., Dziwok C., Fluegge G., Pooth O., Stahl A., Ziemons T., Cheng C., Connor P., De Wit A., Eckerlin G., Eckstein D., Gallo E., Guthoff M., Harb A., Kleinwort C., Mankel R., Maser H., Meyer M., Muhl C., Mussgiller A., Otarid Y., Pitzl D., Reichelt O., Savitskyi M., Stever R., Tonon N., Velyka A., Walsh R., Zuber A., Benecke A., Biskop H., Buhmann P., Eich M., Feindt F., Froehlich A., Garutti E., Gunnellini P., Hajheidari M., Haller J., Hinzmann A., Jabusch H., Kasieczka G., Klanner R., Kutzner V., Lange T., Martens S., Mrowietz M., Niemeyer C., Nissan Y., Pena K., Rieger O., Schleper P., Schwandt J., Schwarz D., Sonneveld J., Steinbruck G., Tews A., Vormwald B., Wellhausen J., Zoi I., Abbas M., Ardila L., Balzer M., Barvich T., Blank T., Butz E., Caselle M., De Boer W., Dierlamm A., Droll A., El Morabit K., Hartmann F., Husemann U., Koppenhofer R., Maier S., Mallows S., Mehner T., Metzler M., Muller-Gosewisch J. -O., Muller T., Neufeld M., Nurnberg A., Sander O., Schroder M., Shvetsov I., Simonis H. -J., Stanulla J., Steck P., Wassmer M., Weber M., Weddigen A., Wittig F., Anagnostou G., Assiouras P., Daskalakis G., Kazas I., Kyriakis A., Loukas D., Balazs T., Marton K., Sikler F., Veszpremi V., Das A., Kar C., Mal P., Mohanty R., Saha P., Swain S., Bhardwaj A., Jain C., Jain G., Kumar A., Ranjan K., Saumya S., Bhattacharya R., Dutta S., Palit P., Saha G., Sarkar S., Cariola P., Creanza D., De Palma M., De Robertis G., Fiore L., Ince M., Loddo F., Maggi G., Martiradonna S., Mongelli M., My S., Selvaggi G., Silvestris L., Albergo S., Costa S., Di Mattia A., Potenza R., Saizu M. A., Tricomi A., Tuve C., Barbagli G., Brianzi M., Cassese A., Ceccarelli R., Ciaranfi R., Ciulli V., Civinini C., D'Alessandro R., Fiori F., Focardi E., Latino G., Lenzi P., Lizzo M., Meschini M., Paoletti S., Seidita R., Sguazzoni G., Viliani L., Ferro F., Robutti E., Brivio F., Dinardo M. E., Dini P., Gennai S., Guzzi L., Malvezzi S., Menasce D., Moroni L., Pedrini D., Zuolo D., Azzi P., Bacchetta N., Bortignon P., Bisello D., Dorigo T., Tosi M., Yarar H., Gaioni L., Manghisoni M., Ratti L., Re V., Riceputi E., Traversi G., Asenov P., Baldinelli G., Bianchi F., Bilei G. M., Bizzaglia S., Caprai M., Checcucci B., Ciangottini D., Fan L., Farnesini L., Ionica M., Magherini M., Mantovani G., Mariani V., Menichelli M., Morozzi A., Moscatelli F., Passeri D., Piccinelli A., Placidi P., Rossi A., Santocchia A., Spiga D., Storchi L., Tedeschi T., Turrioni C., Azzurri P., Bagliesi G., Basti A., Beccherle R., Bertacchi V., Bianchini L., Boccali T., Bosi F., Castaldi R., Ciocci M. A., Dell'Orso R., Donato S., Giassi A., Grippo M. T., Ligabue F., Magazzu G., Manca E., Mandorli G., Massa M., Mazzoni E., Messineo A., Moggi A., Morsani F., Palla F., Parolia S., Raffaelli F., Ramirez Sanchez G., Rizzi A., Roy Chowdhury S., Spagnolo P., Tenchini R., Tonelli G., Venturi A., Verdini P. G., Bellan R., Coli S., Costa M., Covarelli R., Dellacasa G., Demaria N., Garbolino S., Grippo M., Migliore E., Monteil E., Monteno M., Ortona G., Pacher L., Rivetti A., Solano A., Vagnerini A., Duarte Campderros J., Fernandez M., Garcia Alonso A., Gomez G., Gonzalez Sanchez F. J., Jaramillo Echeverria R., Moya D., Ruiz Jimeno A., Scodellaro L., Vila I., Virto A. L., Vizan Garcia J. M., Abbaneo D., Ahmed I., Albert E., Almeida J., Barinoff M., Batista Lopes J., Bergamin G., Blanchot G., Boyer F., Caratelli A., Carnesecchi R., Ceresa D., Christiansen J., Cichy K., Curras Rivera E., Daguin J., Detraz S., Dudek M., Emriskova N., Faccio F., Frank N., French T., Hollos A., Hugo G., Kaplon J., Kerekes Z., Kloukinas K., Koss N., Kottelat L., Koukola D., Kovacs M., La Rosa A., Lenoir P., Loos R., Marchioro A., Mateos Dominguez I., Mersi S., Michelis S., Millet A., Onnela A., Orfanelli S., Pakulski T., Papadopoulos A., Perez A., Perez Gomez F., Pernot J. -F., Petagna P., Piazza Q., Rose P., Scarf S., Sinani M., Tavares Rego R., Tropea P., Troska J., Tsirou A., Vasey F., Vichoudis P., Zografos A., Bertl W., Caminada L., Ebrahimi A., Erdmann W., Horisberger R., Kaestli H. -C., Kotlinski D., Langenegger U., Meier B., Missiroli M., Noehte L., Rohe T., Streuli S., Androsov K., Backhaus M., Becker R., Berger P., Di Calafiori D., Calandri A., Djambazov L., Donega M., Dorfer C., Glessgen F., Grab C., Hits D., Lustermann W., Meinhard M., Perovic V., Reichmann M., Ristic B., Roeser U., Ruini D., Sorensen J., Wallny R., Bosiger K., Brzhechko D., Canelli F., Cormier K., Del Burgo R., Huwiler M., Jofrehei A., Kilminster B., Leontsinis S., Macchiolo A., Molinatti U., Maier R., Mikuni V., Neutelings I., Reimers A., Robmann P., Takahashi Y., Wolf D., Chen P. -H., Hou W. -S., Lu R. -S., Clement E., Cussans D., Goldstein J., Seif El Nasr-Storey S., Stylianou N., Coughlan J. A., Harder K., Holmberg M. -L., Manolopoulos K., Schuh T., Tomalin I. R., Bainbridge R., Borg J., Brown C., Fedi G., Hall G., Monk D., Pesaresi M., Uchida K., Coldham K., Cole J., Ghorbani M., Khan A., Kyberd P., Reid I. D., Bartek R., Dominguez A., Uniyal R., Vargas Hernandez A. M., Benelli G., Burkle B., Coubez X., Heintz U., Hinton N., Hogan J., Honma A., Korotkov A., Li D., Lukasik M., Narain M., Sagir S., Simpson F., Spencer E., Usai E., Voelker J., Wong W. Y., Zhang W., Cannaert E., Chertok M., Conway J., Haza G., Hemer D., Jensen F., Thomson J., Wei W., Welton T., Yohay R., Zhang F., Hanson G., Si W., Chang P., Cooperstein S. B., Deelen N., Gerosa R., Giannini L., Krutelyov S., Sathia B. N., Sharma V., Tadel M., Yagil A., Dutta V., Gouskos L., Incandela J., Kilpatrick M., Kyre S., Qu H., Quinnan M., Cumalat J. P., Ford W. T., Macdonald E., Perloff A., Stenson K., Ulmer K. A., Wagner S. R., Alexander J., Bordlemay Padilla Y., Bright-Thonney S., Cheng Y., Cranshaw D., Datta A., Filenius A., Hogan S., Lantz S., Monroy J., Postema H., Quach D., Reichert J., Reid M., Riley D., Ryd A., Smolenski K., Strohman C., Thom J., Wittich P., Zou R., Bakshi A., Berry D. R., Burkett K., Butler D., Canepa A., Derylo G., Dickinson J., Ghosh A., Gingu C., Gonzalez H., Grunendahl S., Horyn L. A., Johnson M., Klabbers P., Lei C. M., Lipton R., Los S., Merkel P., Murat P., Nahn S., Ravera F., Rivera R., Spiegel L., Uplegger L., Voirin E., Weber H. A., Becerril Gonzalez H., Chen X., Dittmer S., Evdokimov A., Evdokimov O., Gerber C. E., Hofman D. J., Mills C., Roy T., Rudrabhatla S., Yoo J., Alhusseini M., Durgut S., Nachtman J., Onel Y., Rude C., Snyder C., Yi K., Amram O., Eminizer N., Gritsan A., Kyriacou S., Maksimovic P., Mantilla Suarez C., Roskes J., Swartz M., Vami T., Anguiano J., Bean A., Khalil S., Schmitz E., Wilson G., Ivanov A., Mitchell T., Modak A., Taylor R., Acosta J. G., Cremaldi L. M., Oliveros S., Perera L., Summers D., Bloom K., Claes D. R., Fangmeier C., Golf F., Joo C., Kravchenko I., Siado J., Iashvili I., Kharchilava A., McLean C., Nguyen D., Pekkanen J., Rappoccio S., Albert A., Demiragli Z., Gastler D., Hazen E., Peck A., Rohlf J., Li J., Parker A., Skinnari L., Hahn K., Liu Y., Sung K., Cardwell B., Francis B., Hill C. S., Wei K., Malik S., Norberg S., Ramirez Vargas J. E., Chawla R., Das S., Jones M., Jung A., Koshy A., Negro G., Thieman J., Cheng T., Dolen J., Parashar N., Ecklund K. M., Freed S., Liu H., Nussbaum T., Demina R., Dulemba J., Hindrichs O., Bartz E., Gandrakotra A., Gershtein Y., Halkiadakis E., Hart A., Lath A., Nash K., Osherson M., Schnetzer S., Stone R., Eusebi R., D'Angelo P., Johns W., Adam, W, Bergauer, T, Bloch, D, Dragicevic, M, Fruhwirth, R, Hinger, V, Steininger, H, Beaumont, W, Di Croce, D, Janssen, X, Kello, T, Lelek, A, Van Mechelen, P, Van Putte, S, Van Remortel, N, Blekman, F, Delcourt, M, D'Hondt, J, Lowette, S, Moortgat, S, Morton, A, Muller, D, Sahasransu, A, S rensen Bols, E, Allard, Y, Beghin, D, Bilin, B, Clerbaux, B, De Lentdecker, G, Deng, W, Favart, L, Grebenyuk, A, Hohov, D, Kalsi, A, Khalilzadeh, A, Mahdavikhorrami, M, Makarenko, I, Moureaux, L, Popov, A, Postiau, N, Robert, F, Song, Z, Thomas, L, Vanlaer, P, Vannerom, D, Wang, Q, Wang, H, Yang, Y, Bethani, A, Bruno, G, Bury, F, Caputo, C, David, P, Deblaere, A, Delaere, C, Donertas, I, Giammanco, A, Lemaitre, V, Mondal, K, Prisciandaro, J, Szilasi, N, Taliercio, A, Teklishyn, M, Vischia, P, Wertz, S, Brigljevic, V, Ferencek, D, Majumder, D, Mishra, S, Roguljic, M, Starodumov, A, Susa, T, Eerola, P, Brucken, E, Lampen, T, Martikainen, L, Tuominen, E, Luukka, P, Tuuva, T, Agram, J, Andrea, J, Apparu, D, Bonnin, C, Bourgatte, G, Brom, J, Chabert, E, Charles, L, Collard, C, Dangelser, E, Darej, D, Goerlach, U, Grimault, C, Gross, L, Haas, C, Krauth, M, Nibigira, E, Ollivier-Henry, N, Silva Jimenez, E, Asilar, E, Baulieu, G, Boudoul, G, Caponetto, L, Chanon, N, Contardo, D, Dene, P, Dupasquier, T, Galbit, G, Jain, S, Lumb, N, Mirabito, L, Nodari, B, Perries, S, Vander Donckt, M, Viret, S, Feld, L, Karpinski, W, Klein, K, Lipinski, M, Louis, D, Meuser, D, Pauls, A, Pierschel, G, Rauch, M, Rowert, N, Schulz, J, Teroerde, M, Wlochal, M, Dziwok, C, Fluegge, G, Pooth, O, Stahl, A, Ziemons, T, Cheng, C, Connor, P, De Wit, A, Eckerlin, G, Eckstein, D, Gallo, E, Guthoff, M, Harb, A, Kleinwort, C, Mankel, R, Maser, H, Meyer, M, Muhl, C, Mussgiller, A, Otarid, Y, Pitzl, D, Reichelt, O, Savitskyi, M, Stever, R, Tonon, N, Velyka, A, Walsh, R, Zuber, A, Benecke, A, Biskop, H, Buhmann, P, Eich, M, Feindt, F, Froehlich, A, Garutti, E, Gunnellini, P, Hajheidari, M, Haller, J, Hinzmann, A, Jabusch, H, Kasieczka, G, Klanner, R, Kutzner, V, Lange, T, Martens, S, Mrowietz, M, Niemeyer, C, Nissan, Y, Pena, K, Rieger, O, Schleper, P, Schwandt, J, Schwarz, D, Sonneveld, J, Steinbruck, G, Tews, A, Vormwald, B, Wellhausen, J, Zoi, I, Abbas, M, Ardila, L, Balzer, M, Barvich, T, Blank, T, Butz, E, Caselle, M, De Boer, W, Dierlamm, A, Droll, A, El Morabit, K, Hartmann, F, Husemann, U, Koppenhofer, R, Maier, S, Mallows, S, Mehner, T, Metzler, M, Muller-Gosewisch, J, Muller, T, Neufeld, M, Nurnberg, A, Sander, O, Schroder, M, Shvetsov, I, Simonis, H, Stanulla, J, Steck, P, Wassmer, M, Weber, M, Weddigen, A, Wittig, F, Anagnostou, G, Assiouras, P, Daskalakis, G, Kazas, I, Kyriakis, A, Loukas, D, Balazs, T, Marton, K, Sikler, F, Veszpremi, V, Das, A, Kar, C, Mal, P, Mohanty, R, Saha, P, Swain, S, Bhardwaj, A, Jain, C, Jain, G, Kumar, A, Ranjan, K, Saumya, S, Bhattacharya, R, Dutta, S, Palit, P, Saha, G, Sarkar, S, Cariola, P, Creanza, D, De Palma, M, De Robertis, G, Fiore, L, Ince, M, Loddo, F, Maggi, G, Martiradonna, S, Mongelli, M, My, S, Selvaggi, G, Silvestris, L, Albergo, S, Costa, S, Di Mattia, A, Potenza, R, Saizu, M, Tricomi, A, Tuve, C, Barbagli, G, Brianzi, M, Cassese, A, Ceccarelli, R, Ciaranfi, R, Ciulli, V, Civinini, C, D'Alessandro, R, Fiori, F, Focardi, E, Latino, G, Lenzi, P, Lizzo, M, Meschini, M, Paoletti, S, Seidita, R, Sguazzoni, G, Viliani, L, Ferro, F, Robutti, E, Brivio, F, Dinardo, M, Dini, P, Gennai, S, Guzzi, L, Malvezzi, S, Menasce, D, Moroni, L, Pedrini, D, Zuolo, D, Azzi, P, Bacchetta, N, Bortignon, P, Bisello, D, Dorigo, T, Tosi, M, Yarar, H, Gaioni, L, Manghisoni, M, Ratti, L, Re, V, Riceputi, E, Traversi, G, Asenov, P, Baldinelli, G, Bianchi, F, Bilei, G, Bizzaglia, S, Caprai, M, Checcucci, B, Ciangottini, D, Fan, L, Farnesini, L, Ionica, M, Magherini, M, Mantovani, G, Mariani, V, Menichelli, M, Morozzi, A, Moscatelli, F, Passeri, D, Piccinelli, A, Placidi, P, Rossi, A, Santocchia, A, Spiga, D, Storchi, L, Tedeschi, T, Turrioni, C, Azzurri, P, Bagliesi, G, Basti, A, Beccherle, R, Bertacchi, V, Bianchini, L, Boccali, T, Bosi, F, Castaldi, R, Ciocci, M, Dell'Orso, R, Donato, S, Giassi, A, Grippo, M, Ligabue, F, Magazzu, G, Manca, E, Mandorli, G, Massa, M, Mazzoni, E, Messineo, A, Moggi, A, Morsani, F, Palla, F, Parolia, S, Raffaelli, F, Ramirez Sanchez, G, Rizzi, A, Roy Chowdhury, S, Spagnolo, P, Tenchini, R, Tonelli, G, Venturi, A, Verdini, P, Bellan, R, Coli, S, Costa, M, Covarelli, R, Dellacasa, G, Demaria, N, Garbolino, S, Migliore, E, Monteil, E, Monteno, M, Ortona, G, Pacher, L, Rivetti, A, Solano, A, Vagnerini, A, Duarte Campderros, J, Fernandez, M, Garcia Alonso, A, Gomez, G, Gonzalez Sanchez, F, Jaramillo Echeverria, R, Moya, D, Ruiz Jimeno, A, Scodellaro, L, Vila, I, Virto, A, Vizan Garcia, J, Abbaneo, D, Ahmed, I, Albert, E, Almeida, J, Barinoff, M, Batista Lopes, J, Bergamin, G, Blanchot, G, Boyer, F, Caratelli, A, Carnesecchi, R, Ceresa, D, Christiansen, J, Cichy, K, Curras Rivera, E, Daguin, J, Detraz, S, Dudek, M, Emriskova, N, Faccio, F, Frank, N, French, T, Hollos, A, Hugo, G, Kaplon, J, Kerekes, Z, Kloukinas, K, Koss, N, Kottelat, L, Koukola, D, Kovacs, M, La Rosa, A, Lenoir, P, Loos, R, Marchioro, A, Mateos Dominguez, I, Mersi, S, Michelis, S, Millet, A, Onnela, A, Orfanelli, S, Pakulski, T, Papadopoulos, A, Perez, A, Perez Gomez, F, Pernot, J, Petagna, P, Piazza, Q, Rose, P, Scarf, S, Sinani, M, Tavares Rego, R, Tropea, P, Troska, J, Tsirou, A, Vasey, F, Vichoudis, P, Zografos, A, Bertl, W, Caminada, L, Ebrahimi, A, Erdmann, W, Horisberger, R, Kaestli, H, Kotlinski, D, Langenegger, U, Meier, B, Missiroli, M, Noehte, L, Rohe, T, Streuli, S, Androsov, K, Backhaus, M, Becker, R, Berger, P, Di Calafiori, D, Calandri, A, Djambazov, L, Donega, M, Dorfer, C, Glessgen, F, Grab, C, Hits, D, Lustermann, W, Meinhard, M, Perovic, V, Reichmann, M, Ristic, B, Roeser, U, Ruini, D, Sorensen, J, Wallny, R, Bosiger, K, Brzhechko, D, Canelli, F, Cormier, K, Del Burgo, R, Huwiler, M, Jofrehei, A, Kilminster, B, Leontsinis, S, Macchiolo, A, Molinatti, U, Maier, R, Mikuni, V, Neutelings, I, Reimers, A, Robmann, P, Takahashi, Y, Wolf, D, Chen, P, Hou, W, Lu, R, Clement, E, Cussans, D, Goldstein, J, Seif El Nasr-Storey, S, Stylianou, N, Coughlan, J, Harder, K, Holmberg, M, Manolopoulos, K, Schuh, T, Tomalin, I, Bainbridge, R, Borg, J, Brown, C, Fedi, G, Hall, G, Monk, D, Pesaresi, M, Uchida, K, Coldham, K, Cole, J, Ghorbani, M, Khan, A, Kyberd, P, Reid, I, Bartek, R, Dominguez, A, Uniyal, R, Vargas Hernandez, A, Benelli, G, Burkle, B, Coubez, X, Heintz, U, Hinton, N, Hogan, J, Honma, A, Korotkov, A, Li, D, Lukasik, M, Narain, M, Sagir, S, Simpson, F, Spencer, E, Usai, E, Voelker, J, Wong, W, Zhang, W, Cannaert, E, Chertok, M, Conway, J, Haza, G, Hemer, D, Jensen, F, Thomson, J, Wei, W, Welton, T, Yohay, R, Zhang, F, Hanson, G, Si, W, Chang, P, Cooperstein, S, Deelen, N, Gerosa, R, Giannini, L, Krutelyov, S, Sathia, B, Sharma, V, Tadel, M, Yagil, A, Dutta, V, Gouskos, L, Incandela, J, Kilpatrick, M, Kyre, S, Qu, H, Quinnan, M, Cumalat, J, Ford, W, Macdonald, E, Perloff, A, Stenson, K, Ulmer, K, Wagner, S, Alexander, J, Bordlemay Padilla, Y, Bright-Thonney, S, Cheng, Y, Cranshaw, D, Datta, A, Filenius, A, Hogan, S, Lantz, S, Monroy, J, Postema, H, Quach, D, Reichert, J, Reid, M, Riley, D, Ryd, A, Smolenski, K, Strohman, C, Thom, J, Wittich, P, Zou, R, Bakshi, A, Berry, D, Burkett, K, Butler, D, Canepa, A, Derylo, G, Dickinson, J, Ghosh, A, Gingu, C, Gonzalez, H, Grunendahl, S, Horyn, L, Johnson, M, Klabbers, P, Lei, C, Lipton, R, Los, S, Merkel, P, Murat, P, Nahn, S, Ravera, F, Rivera, R, Spiegel, L, Uplegger, L, Voirin, E, Weber, H, Becerril Gonzalez, H, Chen, X, Dittmer, S, Evdokimov, A, Evdokimov, O, Gerber, C, Hofman, D, Mills, C, Roy, T, Rudrabhatla, S, Yoo, J, Alhusseini, M, Durgut, S, Nachtman, J, Onel, Y, Rude, C, Snyder, C, Yi, K, Amram, O, Eminizer, N, Gritsan, A, Kyriacou, S, Maksimovic, P, Mantilla Suarez, C, Roskes, J, Swartz, M, Vami, T, Anguiano, J, Bean, A, Khalil, S, Schmitz, E, Wilson, G, Ivanov, A, Mitchell, T, Modak, A, Taylor, R, Acosta, J, Cremaldi, L, Oliveros, S, Perera, L, Summers, D, Bloom, K, Claes, D, Fangmeier, C, Golf, F, Joo, C, Kravchenko, I, Siado, J, Iashvili, I, Kharchilava, A, Mclean, C, Nguyen, D, Pekkanen, J, Rappoccio, S, Albert, A, Demiragli, Z, Gastler, D, Hazen, E, Peck, A, Rohlf, J, Li, J, Parker, A, Skinnari, L, Hahn, K, Liu, Y, Sung, K, Cardwell, B, Francis, B, Hill, C, Wei, K, Malik, S, Norberg, S, Ramirez Vargas, J, Chawla, R, Das, S, Jones, M, Jung, A, Koshy, A, Negro, G, Thieman, J, Cheng, T, Dolen, J, Parashar, N, Ecklund, K, Freed, S, Liu, H, Nussbaum, T, Demina, R, Dulemba, J, Hindrichs, O, Bartz, E, Gandrakotra, A, Gershtein, Y, Halkiadakis, E, Hart, A, Lath, A, Nash, K, Osherson, M, Schnetzer, S, Stone, R, Eusebi, R, D'Angelo, P, Johns, W, Adam W., Bergauer T., Bloch D., Dragicevic M., Fruhwirth R., Hinger V., Steininger H., Beaumont W., Di Croce D., Janssen X., Kello T., Lelek A., Van Mechelen P., Van Putte S., Van Remortel N., Blekman F., Delcourt M., D'Hondt J., Lowette S., Moortgat S., Morton A., Muller D., Sahasransu A. R., S rensen Bols E., Allard Y., Beghin D., Bilin B., Clerbaux B., De Lentdecker G., Deng W., Favart L., Grebenyuk A., Hohov D., Kalsi A., Khalilzadeh A., Mahdavikhorrami M., Makarenko I., Moureaux L., Popov A., Postiau N., Robert F., Song Z., Thomas L., Vanlaer P., Vannerom D., Wang Q., Wang H., Yang Y., Bethani A., Bruno G., Bury F., Caputo C., David P., Deblaere A., Delaere C., Donertas I. S., Giammanco A., Lemaitre V., Mondal K., Prisciandaro J., Szilasi N., Taliercio A., Teklishyn M., Vischia P., Wertz S., Brigljevic V., Ferencek D., Majumder D., Mishra S., Roguljic M., Starodumov A., Susa T., Eerola P., Brucken E., Lampen T., Martikainen L., Tuominen E., Luukka P., Tuuva T., Agram J. -L., Andrea J., Apparu D., Bonnin C., Bourgatte G., Brom J. -M., Chabert E., Charles L., Collard C., Dangelser E., Darej D., Goerlach U., Grimault C., Gross L., Haas C., Krauth M., Nibigira E., Ollivier-Henry N., Silva Jimenez E., Asilar E., Baulieu G., Boudoul G., Caponetto L., Chanon N., Contardo D., Dene P., Dupasquier T., Galbit G., Jain S., Lumb N., Mirabito L., Nodari B., Perries S., Vander Donckt M., Viret S., Feld L., Karpinski W., Klein K., Lipinski M., Louis D., Meuser D., Pauls A., Pierschel G., Rauch M., Rowert N., Schulz J., Teroerde M., Wlochal M., Dziwok C., Fluegge G., Pooth O., Stahl A., Ziemons T., Cheng C., Connor P., De Wit A., Eckerlin G., Eckstein D., Gallo E., Guthoff M., Harb A., Kleinwort C., Mankel R., Maser H., Meyer M., Muhl C., Mussgiller A., Otarid Y., Pitzl D., Reichelt O., Savitskyi M., Stever R., Tonon N., Velyka A., Walsh R., Zuber A., Benecke A., Biskop H., Buhmann P., Eich M., Feindt F., Froehlich A., Garutti E., Gunnellini P., Hajheidari M., Haller J., Hinzmann A., Jabusch H., Kasieczka G., Klanner R., Kutzner V., Lange T., Martens S., Mrowietz M., Niemeyer C., Nissan Y., Pena K., Rieger O., Schleper P., Schwandt J., Schwarz D., Sonneveld J., Steinbruck G., Tews A., Vormwald B., Wellhausen J., Zoi I., Abbas M., Ardila L., Balzer M., Barvich T., Blank T., Butz E., Caselle M., De Boer W., Dierlamm A., Droll A., El Morabit K., Hartmann F., Husemann U., Koppenhofer R., Maier S., Mallows S., Mehner T., Metzler M., Muller-Gosewisch J. -O., Muller T., Neufeld M., Nurnberg A., Sander O., Schroder M., Shvetsov I., Simonis H. -J., Stanulla J., Steck P., Wassmer M., Weber M., Weddigen A., Wittig F., Anagnostou G., Assiouras P., Daskalakis G., Kazas I., Kyriakis A., Loukas D., Balazs T., Marton K., Sikler F., Veszpremi V., Das A., Kar C., Mal P., Mohanty R., Saha P., Swain S., Bhardwaj A., Jain C., Jain G., Kumar A., Ranjan K., Saumya S., Bhattacharya R., Dutta S., Palit P., Saha G., Sarkar S., Cariola P., Creanza D., De Palma M., De Robertis G., Fiore L., Ince M., Loddo F., Maggi G., Martiradonna S., Mongelli M., My S., Selvaggi G., Silvestris L., Albergo S., Costa S., Di Mattia A., Potenza R., Saizu M. A., Tricomi A., Tuve C., Barbagli G., Brianzi M., Cassese A., Ceccarelli R., Ciaranfi R., Ciulli V., Civinini C., D'Alessandro R., Fiori F., Focardi E., Latino G., Lenzi P., Lizzo M., Meschini M., Paoletti S., Seidita R., Sguazzoni G., Viliani L., Ferro F., Robutti E., Brivio F., Dinardo M. E., Dini P., Gennai S., Guzzi L., Malvezzi S., Menasce D., Moroni L., Pedrini D., Zuolo D., Azzi P., Bacchetta N., Bortignon P., Bisello D., Dorigo T., Tosi M., Yarar H., Gaioni L., Manghisoni M., Ratti L., Re V., Riceputi E., Traversi G., Asenov P., Baldinelli G., Bianchi F., Bilei G. M., Bizzaglia S., Caprai M., Checcucci B., Ciangottini D., Fan L., Farnesini L., Ionica M., Magherini M., Mantovani G., Mariani V., Menichelli M., Morozzi A., Moscatelli F., Passeri D., Piccinelli A., Placidi P., Rossi A., Santocchia A., Spiga D., Storchi L., Tedeschi T., Turrioni C., Azzurri P., Bagliesi G., Basti A., Beccherle R., Bertacchi V., Bianchini L., Boccali T., Bosi F., Castaldi R., Ciocci M. A., Dell'Orso R., Donato S., Giassi A., Grippo M. T., Ligabue F., Magazzu G., Manca E., Mandorli G., Massa M., Mazzoni E., Messineo A., Moggi A., Morsani F., Palla F., Parolia S., Raffaelli F., Ramirez Sanchez G., Rizzi A., Roy Chowdhury S., Spagnolo P., Tenchini R., Tonelli G., Venturi A., Verdini P. G., Bellan R., Coli S., Costa M., Covarelli R., Dellacasa G., Demaria N., Garbolino S., Grippo M., Migliore E., Monteil E., Monteno M., Ortona G., Pacher L., Rivetti A., Solano A., Vagnerini A., Duarte Campderros J., Fernandez M., Garcia Alonso A., Gomez G., Gonzalez Sanchez F. J., Jaramillo Echeverria R., Moya D., Ruiz Jimeno A., Scodellaro L., Vila I., Virto A. L., Vizan Garcia J. M., Abbaneo D., Ahmed I., Albert E., Almeida J., Barinoff M., Batista Lopes J., Bergamin G., Blanchot G., Boyer F., Caratelli A., Carnesecchi R., Ceresa D., Christiansen J., Cichy K., Curras Rivera E., Daguin J., Detraz S., Dudek M., Emriskova N., Faccio F., Frank N., French T., Hollos A., Hugo G., Kaplon J., Kerekes Z., Kloukinas K., Koss N., Kottelat L., Koukola D., Kovacs M., La Rosa A., Lenoir P., Loos R., Marchioro A., Mateos Dominguez I., Mersi S., Michelis S., Millet A., Onnela A., Orfanelli S., Pakulski T., Papadopoulos A., Perez A., Perez Gomez F., Pernot J. -F., Petagna P., Piazza Q., Rose P., Scarf S., Sinani M., Tavares Rego R., Tropea P., Troska J., Tsirou A., Vasey F., Vichoudis P., Zografos A., Bertl W., Caminada L., Ebrahimi A., Erdmann W., Horisberger R., Kaestli H. -C., Kotlinski D., Langenegger U., Meier B., Missiroli M., Noehte L., Rohe T., Streuli S., Androsov K., Backhaus M., Becker R., Berger P., Di Calafiori D., Calandri A., Djambazov L., Donega M., Dorfer C., Glessgen F., Grab C., Hits D., Lustermann W., Meinhard M., Perovic V., Reichmann M., Ristic B., Roeser U., Ruini D., Sorensen J., Wallny R., Bosiger K., Brzhechko D., Canelli F., Cormier K., Del Burgo R., Huwiler M., Jofrehei A., Kilminster B., Leontsinis S., Macchiolo A., Molinatti U., Maier R., Mikuni V., Neutelings I., Reimers A., Robmann P., Takahashi Y., Wolf D., Chen P. -H., Hou W. -S., Lu R. -S., Clement E., Cussans D., Goldstein J., Seif El Nasr-Storey S., Stylianou N., Coughlan J. A., Harder K., Holmberg M. -L., Manolopoulos K., Schuh T., Tomalin I. R., Bainbridge R., Borg J., Brown C., Fedi G., Hall G., Monk D., Pesaresi M., Uchida K., Coldham K., Cole J., Ghorbani M., Khan A., Kyberd P., Reid I. D., Bartek R., Dominguez A., Uniyal R., Vargas Hernandez A. M., Benelli G., Burkle B., Coubez X., Heintz U., Hinton N., Hogan J., Honma A., Korotkov A., Li D., Lukasik M., Narain M., Sagir S., Simpson F., Spencer E., Usai E., Voelker J., Wong W. Y., Zhang W., Cannaert E., Chertok M., Conway J., Haza G., Hemer D., Jensen F., Thomson J., Wei W., Welton T., Yohay R., Zhang F., Hanson G., Si W., Chang P., Cooperstein S. B., Deelen N., Gerosa R., Giannini L., Krutelyov S., Sathia B. N., Sharma V., Tadel M., Yagil A., Dutta V., Gouskos L., Incandela J., Kilpatrick M., Kyre S., Qu H., Quinnan M., Cumalat J. P., Ford W. T., Macdonald E., Perloff A., Stenson K., Ulmer K. A., Wagner S. R., Alexander J., Bordlemay Padilla Y., Bright-Thonney S., Cheng Y., Cranshaw D., Datta A., Filenius A., Hogan S., Lantz S., Monroy J., Postema H., Quach D., Reichert J., Reid M., Riley D., Ryd A., Smolenski K., Strohman C., Thom J., Wittich P., Zou R., Bakshi A., Berry D. R., Burkett K., Butler D., Canepa A., Derylo G., Dickinson J., Ghosh A., Gingu C., Gonzalez H., Grunendahl S., Horyn L. A., Johnson M., Klabbers P., Lei C. M., Lipton R., Los S., Merkel P., Murat P., Nahn S., Ravera F., Rivera R., Spiegel L., Uplegger L., Voirin E., Weber H. A., Becerril Gonzalez H., Chen X., Dittmer S., Evdokimov A., Evdokimov O., Gerber C. E., Hofman D. J., Mills C., Roy T., Rudrabhatla S., Yoo J., Alhusseini M., Durgut S., Nachtman J., Onel Y., Rude C., Snyder C., Yi K., Amram O., Eminizer N., Gritsan A., Kyriacou S., Maksimovic P., Mantilla Suarez C., Roskes J., Swartz M., Vami T., Anguiano J., Bean A., Khalil S., Schmitz E., Wilson G., Ivanov A., Mitchell T., Modak A., Taylor R., Acosta J. G., Cremaldi L. M., Oliveros S., Perera L., Summers D., Bloom K., Claes D. R., Fangmeier C., Golf F., Joo C., Kravchenko I., Siado J., Iashvili I., Kharchilava A., McLean C., Nguyen D., Pekkanen J., Rappoccio S., Albert A., Demiragli Z., Gastler D., Hazen E., Peck A., Rohlf J., Li J., Parker A., Skinnari L., Hahn K., Liu Y., Sung K., Cardwell B., Francis B., Hill C. S., Wei K., Malik S., Norberg S., Ramirez Vargas J. E., Chawla R., Das S., Jones M., Jung A., Koshy A., Negro G., Thieman J., Cheng T., Dolen J., Parashar N., Ecklund K. M., Freed S., Liu H., Nussbaum T., Demina R., Dulemba J., Hindrichs O., Bartz E., Gandrakotra A., Gershtein Y., Halkiadakis E., Hart A., Lath A., Nash K., Osherson M., Schnetzer S., Stone R., Eusebi R., D'Angelo P., and Johns W.
- Abstract
The CMS Inner Tracker, made of silicon pixel modules, will be entirely replaced prior to the start of the High Luminosity LHC period. One of the crucial components of the new Inner Tracker system is the readout chip, being developed by the RD53 Collaboration, and in particular its analogue front-end, which receives the signal from the sensor and digitizes it. Three different analogue front-ends (Synchronous, Linear, and Differential) were designed and implemented in the RD53A demonstrator chip. A dedicated evaluation program was carried out to select the most suitable design to build a radiation tolerant pixel detector able to sustain high particle rates with high efficiency and a small fraction of spurious pixel hits. The test results showed that all three analogue front-ends presented strong points, but also limitations. The Differential front-end demonstrated very low noise, but the threshold tuning became problematic after irradiation. Moreover, a saturation in the preamplifier feedback loop affected the return of the signal to baseline and thus increased the dead time. The Synchronous front-end showed very good timing performance, but also higher noise. For the Linear front-end all of the parameters were within specification, although this design had the largest time walk. This limitation was addressed and mitigated in an improved design. The analysis of the advantages and disadvantages of the three front-ends in the context of the CMS Inner Tracker operation requirements led to the selection of the improved design Linear front-end for integration in the final CMS readout chip.
- Published
- 2021
22. A readout system for microwave kinetic inductance detectors using software defined radios
- Author
-
Shafiee, Mehdi, Fedorov, D., Grossan, Bruce, Kizheppatt, V., Smoot, George Fitzgerald, Shafiee, Mehdi, Fedorov, D., Grossan, Bruce, Kizheppatt, V., and Smoot, George Fitzgerald
- Abstract
Microwave kinetic inductance detectors (MKIDs) are typically readout using custom high-speed electronics and firmware, a challenging and time-intensive undertaking. We have developed a readout system for these devices using a software defined radio (SDR), a software implementation of radiofrequency signal processing. The SDR allows use of pre-existing software libraries and minimizes specialized firmware coding, a significant reduction in effort. We customized our SDR to readout mm and optical band MKIDs with resonant frequencies of 1.8-2 GHz and 2-2.2 GHz respectively. We used this readout system to measure the sensitivity of our MKIDs devices to visible light. We show that SDRs are a good candidate for small pixel count MKIDs readout systems, and make recommendations for readout systems for larger Pixel count arrays. © 2021 IOP Publishing Ltd and Sissa Medialab.
- Published
- 2021
23. Overhaul and installation of the ICARUS-T600 liquid argon TPC electronics for the FNAL Short Baseline Neutrino program
- Author
-
Bagby, L, Baibussinov, B, Behera, B, Bellini, V, Benocci, R, Betancourt, M, Bettini, M, Bonesini, M, Boone, T, Braggiotti, A, Brown, J, Budd, H, Calaon, F, Castellani, L, Centro, S, Cocco, A, Convery, M, Fabris, F, Falcone, A, Farnese, C, Fava, A, Fichera, F, Giarin, M, Gibin, D, Guglielmi, A, Guida, R, Hilgenberg, C, Howard, B, Ketchum, W, Marchini, S, Menegolli, A, Meng, G, Montanari, C, Mooney, M, Granados, G, Mueller, J, Nessi, M, Nicoletto, M, Pedrotta, R, Peghin, R, Petrillo, G, Pietropaolo, F, Rampazzo, G, Rappoldi, A, Raselli, G, Rossella, M, Rubbia, C, Scaramelli, A, Sergiampietri, F, Spanu, M, Torretta, D, Torti, M, Tortorici, F, Tsai, Y, Turcato, M, Varanini, F, Ventura, S, Vercellati, F, Vignoli, C, Warner, D, Wilson, R, Worcester, M, Zani, A, Zatti, P, Bagby L., Baibussinov B., Behera B., Bellini V., Benocci R., Betancourt M., Bettini M., Bonesini M., Boone T., Braggiotti A., Brown J. D., Budd H., Calaon F., Castellani L., Centro S., Cocco A. G., Convery M., Fabris F., Falcone A., Farnese C., Fava A., Fichera F., Giarin M., Gibin D., Guglielmi A., Guida R., Hilgenberg C., Howard B., Ketchum W., Marchini S., Menegolli A., Meng G., Montanari C., Mooney M., Granados G. M., Mueller J., Nessi M., Nicoletto M., Pedrotta R., Peghin R., Petrillo G., Pietropaolo F., Rampazzo G., Rappoldi A., Raselli G. L., Rossella M., Rubbia C., Scaramelli A., Sergiampietri F., Spanu M., Torretta D., Torti M., Tortorici F., Tsai Y. T., Turcato M., Varanini F., Ventura S., Vercellati F., Vignoli C., Warner D., Wilson R. J., Worcester M., Zani A., Zatti P. G., Bagby, L, Baibussinov, B, Behera, B, Bellini, V, Benocci, R, Betancourt, M, Bettini, M, Bonesini, M, Boone, T, Braggiotti, A, Brown, J, Budd, H, Calaon, F, Castellani, L, Centro, S, Cocco, A, Convery, M, Fabris, F, Falcone, A, Farnese, C, Fava, A, Fichera, F, Giarin, M, Gibin, D, Guglielmi, A, Guida, R, Hilgenberg, C, Howard, B, Ketchum, W, Marchini, S, Menegolli, A, Meng, G, Montanari, C, Mooney, M, Granados, G, Mueller, J, Nessi, M, Nicoletto, M, Pedrotta, R, Peghin, R, Petrillo, G, Pietropaolo, F, Rampazzo, G, Rappoldi, A, Raselli, G, Rossella, M, Rubbia, C, Scaramelli, A, Sergiampietri, F, Spanu, M, Torretta, D, Torti, M, Tortorici, F, Tsai, Y, Turcato, M, Varanini, F, Ventura, S, Vercellati, F, Vignoli, C, Warner, D, Wilson, R, Worcester, M, Zani, A, Zatti, P, Bagby L., Baibussinov B., Behera B., Bellini V., Benocci R., Betancourt M., Bettini M., Bonesini M., Boone T., Braggiotti A., Brown J. D., Budd H., Calaon F., Castellani L., Centro S., Cocco A. G., Convery M., Fabris F., Falcone A., Farnese C., Fava A., Fichera F., Giarin M., Gibin D., Guglielmi A., Guida R., Hilgenberg C., Howard B., Ketchum W., Marchini S., Menegolli A., Meng G., Montanari C., Mooney M., Granados G. M., Mueller J., Nessi M., Nicoletto M., Pedrotta R., Peghin R., Petrillo G., Pietropaolo F., Rampazzo G., Rappoldi A., Raselli G. L., Rossella M., Rubbia C., Scaramelli A., Sergiampietri F., Spanu M., Torretta D., Torti M., Tortorici F., Tsai Y. T., Turcato M., Varanini F., Ventura S., Vercellati F., Vignoli C., Warner D., Wilson R. J., Worcester M., Zani A., and Zatti P. G.
- Abstract
The ICARUS T600 liquid argon (LAr) time projection chamber (TPC) underwent a major overhaul at CERN in 2016-2017 to prepare for the operation at FNAL in the Short Baseline Neutrino (SBN) program. This included a major upgrade of the photo-multiplier system and of the TPC wire read-out electronics. The full TPC wire read-out electronics together with the new wire biasing and interconnection scheme are described. The design of a new signal feed-through flange is also a fundamental piece of this overhaul whose major feature is the integration of all electronics components onto the signal flange. Initial functionality tests of the full TPC electronics chain installed in the T600 detector at FNAL are also described.
- Published
- 2021
24. The SuperFGD Prototype charged particle beam tests
- Author
-
Blondel, A., Bogomilov, M., Bordoni, S., Cadoux, F., Douqa, D., Dugas, K., Ekelöf, Tord, Favre, Y., Fedotov, S., Fransson, Kjell, Fujita, R., Gramstad, E., Ichikawa, A. K., Ilieva, S., Iwamoto, K., Jesus-Valls, C., Jung, C. K., Kasetti, S. P., Khabibullin, M., Khotjantsev, A., Korzenev, A., Kostin, A., Kudenko, Y., Kutter, T., Lux, T., Maret, L., Matsubara, T., Mefodiev, A., Minamino, A., Mineev, O., Mitev, G., Nessi, M., Nicola, L., Noah, E., Parsa, S., Petkov, G., Sanchez, F., Sgalaberna, D., Shorrock, W., Skwarczynski, K., Suvorov, S., Teklu, A., Tsenov, R., Uchida, Y., Vankova-Kirilova, G., Yershov, N., Yokoyama, M., Zalipska, J., Ye, Zou, Zurek, W., Blondel, A., Bogomilov, M., Bordoni, S., Cadoux, F., Douqa, D., Dugas, K., Ekelöf, Tord, Favre, Y., Fedotov, S., Fransson, Kjell, Fujita, R., Gramstad, E., Ichikawa, A. K., Ilieva, S., Iwamoto, K., Jesus-Valls, C., Jung, C. K., Kasetti, S. P., Khabibullin, M., Khotjantsev, A., Korzenev, A., Kostin, A., Kudenko, Y., Kutter, T., Lux, T., Maret, L., Matsubara, T., Mefodiev, A., Minamino, A., Mineev, O., Mitev, G., Nessi, M., Nicola, L., Noah, E., Parsa, S., Petkov, G., Sanchez, F., Sgalaberna, D., Shorrock, W., Skwarczynski, K., Suvorov, S., Teklu, A., Tsenov, R., Uchida, Y., Vankova-Kirilova, G., Yershov, N., Yokoyama, M., Zalipska, J., Ye, Zou, and Zurek, W.
- Abstract
A novel scintillator detector, the SuperFGD, has been selected as the main neutrino target for an upgrade of the T2K experiment ND280 near detector. The detector design will allow nearly 47r coverage for neutrino interactions at the near detector and will provide lower energy thresholds, significantly reducing systematic errors for the experiment. The SuperFGD is made of optically-isolated scintillator cubes of size 10 x 10 x 10 mm(3), providing the required spatial and energy resolution to reduce systematic uncertainties for future T2K runs. The SuperFGD for T2K will have close to two million cubes in a 1920 x 560 x 1840 mm(3) volume. A prototype made of 24 x 8 x 48 cubes was tested at a charged particle beamline at the CERN PS facility. The SuperFGD Prototype was instrumented with readout electronics similar to the future implementation for T2K. Results on electronics and detector response are reported in this paper, along with a discussion of the 3D reconstruction capabilities of this type of detector. Several physics analyses with the prototype data are also discussed, including a study of stopping protons.
- Published
- 2020
- Full Text
- View/download PDF
25. The ABC130 barrel module prototyping programme for the ATLAS strip tracker
- Author
-
Poley, L., Sawyer, C., Addepalli, S., Affolder, A. A., Allongue, B., Allport, P., Anderssen, E., Anghinolfi, F., Arguin, J-F, Arling, J-H, Arnaez, O., Asbah, N. A., Ashby, J., Asimakopoulou, Eleni M., Atlay, N. B., Bartsch, L., Basso, M. J., Beacham, J., Beaupre, S. L., Beck, G., Beichert, C., Bergsten, L., Bernabeu, J., Bhattarai, P., Bloch, I, Blue, A. J., Bochenek, M., Botte, J., Boynton, L., Brenner, Richard, Brueers, B., Buchanan, E., Bullard, B., Capocasa, F., Carr, I, Carra, S., Chao, C. W., Chen, J., Chen, L., Chen, Y., Chen, X., Cindro, V, Ciocio, A., Civera, J. , V, Cormier, K., Cornell, E., Crick, B., Dabrowski, W., Dam, M., David, C., Demontigny, G., Dette, K., DeWitt, J., Diez, S., Doherty, F., Dopke, J., Dressnandt, N., Edwards, S., Fadeyev, V, Farrington, S., Fawcett, W., Fernandez-Tejero, J., Filmer, E., Fleta, C., Gallop, B., Galloway, Z., Argos, C. Garcia, Garg, D., Gignac, M., Gillberg, D., Giovinazzo, D., Glover, J., Goettlicher, P., Gonella, L., Gorisek, A., Grant, C., Grant, F., Gray, C., Greenall, A., Gregor, I, Greig, G., Grillo, A. A., Gu, S., Guescini, F., da Costa, J. Barreiro Guimaraes, Gunnell, J., Gupta, R., Haber, C., Halgheri, A., Hamersly, D., Haugen, T. E., Hauser, M., Heim, S., Heim, T., Helling, C., Herde, H., Hessey, N. P., Hommels, B., Hoenig, J. C., Hunter, A., Jackson, P., Jewkes, K., John, J. J., Johnson, T. A., Jones, T., Kachiguin, S., Kang, N., Kaplon, J., Kareem, M., Keener, P., Keller, J., Key-Charriere, M., Kilani, S., Kisliuk, D., Klein, C. T., Koffas, T., Kramberger, G., Krizka, K., Kroll, J., Kuehn, S., Kurth, M., Labitan, C., Lacasta, C., Lacker, H., Leon, P., Li, B., Li, C., Li, Y., Li, Z., Liang, Z., Liberatore, M., Lister, A., Liu, K., Liu, P., Lohse, T., Loenker, J., Lou, X., Lu, W., Luce, Z., Lynn, D., MacFadyen, R., Maegdefessel, S., Mahboubi, K., Malik, U., Mandic, I, La Marra, D., Martin, J., Martinez-Mckinney, F., Mikestikova, M., Mikuz, M., Mitra, A., Mladina, E., Montalbano, A., Monzat, D., Morii, M., Mullier, G., Neundorf, J., Newcomer, M., Ng, Y., Nikolica, A., Nikolopoulos, K., Oechsle, J., Oliver, J., Orr, R. S., Ottino, G., Paillard, C., Pani, P., Paowell, S., Parzefall, U., Phillips, P. W., Platero, A., Platero, V, Prahl, V, Pyatt, S., Ran, K., Reardon, N., Rehnisch, L., Renardi, A., Renzmann, M., Rifki, O., Rodriguez, A. Rodriguez, Rosin, G., Rossi, E., Ruggeri, T., Ruehr, F., Rymaszewski, P., Sadrozinski, H. F-W, Sanethavong, P., Santpur, S. Neha, Scharf, C., Schillaci, Z., Schmitt, S., Sharma, A., Sciolla, G., Seiden, A., Shi, X., Simpson-Allsop, C., Snoek, H., Snow, S., Solaz, C., Soldevila, U., Sousa, F., Sperlich, D., Staats, E., Stack, T. L., Stanitzki, M., Starinsky, N., Steentoft, Jonas, Stegler, M., Stelzer, B., Stucci, S., Swientek, K., Taylor, G. N., Taylor, W., Teoh, J. Jian, Teuscher, R., Thomas, J., Tigchelaar, A., Tran, T., Tricoli, A., Trischuk, D. A., Unno, Y., van Nieuwenhuizen, G., Ullan, M., Vermeulen, J., Leitao, P. Vicente, Vickey, T., Vidal, G., Vreeswijk, M., Warren, M., Weidberg, T., Wiehe, M., Wiglesworth, C., Wiik-Fuchs, L., Williams, S., Wilson, J., Witharm, R., Wizemann, F., Wonsak, S., Worm, S., Wormald, M., Xella, S., Yang, Y., Yarwick, J., Yu, T., Zhang, D., Zhang, K., Zhou, M., Zhu, H., Poley, L., Sawyer, C., Addepalli, S., Affolder, A. A., Allongue, B., Allport, P., Anderssen, E., Anghinolfi, F., Arguin, J-F, Arling, J-H, Arnaez, O., Asbah, N. A., Ashby, J., Asimakopoulou, Eleni M., Atlay, N. B., Bartsch, L., Basso, M. J., Beacham, J., Beaupre, S. L., Beck, G., Beichert, C., Bergsten, L., Bernabeu, J., Bhattarai, P., Bloch, I, Blue, A. J., Bochenek, M., Botte, J., Boynton, L., Brenner, Richard, Brueers, B., Buchanan, E., Bullard, B., Capocasa, F., Carr, I, Carra, S., Chao, C. W., Chen, J., Chen, L., Chen, Y., Chen, X., Cindro, V, Ciocio, A., Civera, J. , V, Cormier, K., Cornell, E., Crick, B., Dabrowski, W., Dam, M., David, C., Demontigny, G., Dette, K., DeWitt, J., Diez, S., Doherty, F., Dopke, J., Dressnandt, N., Edwards, S., Fadeyev, V, Farrington, S., Fawcett, W., Fernandez-Tejero, J., Filmer, E., Fleta, C., Gallop, B., Galloway, Z., Argos, C. Garcia, Garg, D., Gignac, M., Gillberg, D., Giovinazzo, D., Glover, J., Goettlicher, P., Gonella, L., Gorisek, A., Grant, C., Grant, F., Gray, C., Greenall, A., Gregor, I, Greig, G., Grillo, A. A., Gu, S., Guescini, F., da Costa, J. Barreiro Guimaraes, Gunnell, J., Gupta, R., Haber, C., Halgheri, A., Hamersly, D., Haugen, T. E., Hauser, M., Heim, S., Heim, T., Helling, C., Herde, H., Hessey, N. P., Hommels, B., Hoenig, J. C., Hunter, A., Jackson, P., Jewkes, K., John, J. J., Johnson, T. A., Jones, T., Kachiguin, S., Kang, N., Kaplon, J., Kareem, M., Keener, P., Keller, J., Key-Charriere, M., Kilani, S., Kisliuk, D., Klein, C. T., Koffas, T., Kramberger, G., Krizka, K., Kroll, J., Kuehn, S., Kurth, M., Labitan, C., Lacasta, C., Lacker, H., Leon, P., Li, B., Li, C., Li, Y., Li, Z., Liang, Z., Liberatore, M., Lister, A., Liu, K., Liu, P., Lohse, T., Loenker, J., Lou, X., Lu, W., Luce, Z., Lynn, D., MacFadyen, R., Maegdefessel, S., Mahboubi, K., Malik, U., Mandic, I, La Marra, D., Martin, J., Martinez-Mckinney, F., Mikestikova, M., Mikuz, M., Mitra, A., Mladina, E., Montalbano, A., Monzat, D., Morii, M., Mullier, G., Neundorf, J., Newcomer, M., Ng, Y., Nikolica, A., Nikolopoulos, K., Oechsle, J., Oliver, J., Orr, R. S., Ottino, G., Paillard, C., Pani, P., Paowell, S., Parzefall, U., Phillips, P. W., Platero, A., Platero, V, Prahl, V, Pyatt, S., Ran, K., Reardon, N., Rehnisch, L., Renardi, A., Renzmann, M., Rifki, O., Rodriguez, A. Rodriguez, Rosin, G., Rossi, E., Ruggeri, T., Ruehr, F., Rymaszewski, P., Sadrozinski, H. F-W, Sanethavong, P., Santpur, S. Neha, Scharf, C., Schillaci, Z., Schmitt, S., Sharma, A., Sciolla, G., Seiden, A., Shi, X., Simpson-Allsop, C., Snoek, H., Snow, S., Solaz, C., Soldevila, U., Sousa, F., Sperlich, D., Staats, E., Stack, T. L., Stanitzki, M., Starinsky, N., Steentoft, Jonas, Stegler, M., Stelzer, B., Stucci, S., Swientek, K., Taylor, G. N., Taylor, W., Teoh, J. Jian, Teuscher, R., Thomas, J., Tigchelaar, A., Tran, T., Tricoli, A., Trischuk, D. A., Unno, Y., van Nieuwenhuizen, G., Ullan, M., Vermeulen, J., Leitao, P. Vicente, Vickey, T., Vidal, G., Vreeswijk, M., Warren, M., Weidberg, T., Wiehe, M., Wiglesworth, C., Wiik-Fuchs, L., Williams, S., Wilson, J., Witharm, R., Wizemann, F., Wonsak, S., Worm, S., Wormald, M., Xella, S., Yang, Y., Yarwick, J., Yu, T., Zhang, D., Zhang, K., Zhou, M., and Zhu, H.
- Abstract
For the Phase-II Upgrade of the ATLAS Detector [1], its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100% silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-250) [2, 3] and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.
- Published
- 2020
- Full Text
- View/download PDF
26. FPGA-based algorithms for feature extraction in the PANDA shashlyk calorimeter
- Author
-
Preston, M., Marciniewski, Pawel, Tegner, P-E, Preston, M., Marciniewski, Pawel, and Tegner, P-E
- Abstract
PANDA is one of the four experimental pillars of the upcoming FAIR facility in Darmstadt, Germany. In PANDA, an antiproton beam with an energy between 1.5 and 15 GeV/c will interact in a hydrogen or nuclear target, allowing for studies of various aspects of non-perturbative QCD. Motivated by the high interaction rates and the diverse physics goals of the experiment, a triggerless readout approach will be employed. In this approach, each detector subsystem will be equipped with intelligent front-end electronics that independently identify signals of interest in real time. In order to detect the most forward-directed photons, electrons and positrons in PANDA, a shashlyk-type calorimeter is being constructed. This detector consists of 1512 individual cells of interleaved plastic scintillators and lead plates, and the output signals will be digitised by sampling ADCs and processed in real time by FPGAs. As part of the triggerless approach, these FPGAs will perform so-called feature extraction on the digitised signals, where the pulse-height and time of incoming pulses are extracted in real time. A substantial pile-up rate is expected, and it is foreseen that the chosen algorithm should enable reconstruction of such events. In this work we present the development of a real-time algorithm based on the well known Optimal Filter, which both improves the overall time resolution of the shashlyk detector and allows reconstruction of pile-up events with good time and energy resolution.
- Published
- 2020
- Full Text
- View/download PDF
27. The SuperFGD Prototype charged particle beam tests
- Author
-
Blondel, A., Bogomilov, M., Bordoni, S., Cadoux, F., Douqa, D., Dugas, K., Ekelöf, Tord, Favre, Y., Fedotov, S., Fransson, Kjell, Fujita, R., Gramstad, E., Ichikawa, A. K., Ilieva, S., Iwamoto, K., Jesus-Valls, C., Jung, C. K., Kasetti, S. P., Khabibullin, M., Khotjantsev, A., Korzenev, A., Kostin, A., Kudenko, Y., Kutter, T., Lux, T., Maret, L., Matsubara, T., Mefodiev, A., Minamino, A., Mineev, O., Mitev, G., Nessi, M., Nicola, L., Noah, E., Parsa, S., Petkov, G., Sanchez, F., Sgalaberna, D., Shorrock, W., Skwarczynski, K., Suvorov, S., Teklu, A., Tsenov, R., Uchida, Y., Vankova-Kirilova, G., Yershov, N., Yokoyama, M., Zalipska, J., Ye, Zou, Zurek, W., Blondel, A., Bogomilov, M., Bordoni, S., Cadoux, F., Douqa, D., Dugas, K., Ekelöf, Tord, Favre, Y., Fedotov, S., Fransson, Kjell, Fujita, R., Gramstad, E., Ichikawa, A. K., Ilieva, S., Iwamoto, K., Jesus-Valls, C., Jung, C. K., Kasetti, S. P., Khabibullin, M., Khotjantsev, A., Korzenev, A., Kostin, A., Kudenko, Y., Kutter, T., Lux, T., Maret, L., Matsubara, T., Mefodiev, A., Minamino, A., Mineev, O., Mitev, G., Nessi, M., Nicola, L., Noah, E., Parsa, S., Petkov, G., Sanchez, F., Sgalaberna, D., Shorrock, W., Skwarczynski, K., Suvorov, S., Teklu, A., Tsenov, R., Uchida, Y., Vankova-Kirilova, G., Yershov, N., Yokoyama, M., Zalipska, J., Ye, Zou, and Zurek, W.
- Abstract
A novel scintillator detector, the SuperFGD, has been selected as the main neutrino target for an upgrade of the T2K experiment ND280 near detector. The detector design will allow nearly 47r coverage for neutrino interactions at the near detector and will provide lower energy thresholds, significantly reducing systematic errors for the experiment. The SuperFGD is made of optically-isolated scintillator cubes of size 10 x 10 x 10 mm(3), providing the required spatial and energy resolution to reduce systematic uncertainties for future T2K runs. The SuperFGD for T2K will have close to two million cubes in a 1920 x 560 x 1840 mm(3) volume. A prototype made of 24 x 8 x 48 cubes was tested at a charged particle beamline at the CERN PS facility. The SuperFGD Prototype was instrumented with readout electronics similar to the future implementation for T2K. Results on electronics and detector response are reported in this paper, along with a discussion of the 3D reconstruction capabilities of this type of detector. Several physics analyses with the prototype data are also discussed, including a study of stopping protons.
- Published
- 2020
- Full Text
- View/download PDF
28. The SuperFGD Prototype charged particle beam tests
- Author
-
Blondel, A., Bogomilov, M., Bordoni, S., Cadoux, F., Douqa, D., Dugas, K., Ekelöf, Tord, Favre, Y., Fedotov, S., Fransson, Kjell, Fujita, R., Gramstad, E., Ichikawa, A. K., Ilieva, S., Iwamoto, K., Jesus-Valls, C., Jung, C. K., Kasetti, S. P., Khabibullin, M., Khotjantsev, A., Korzenev, A., Kostin, A., Kudenko, Y., Kutter, T., Lux, T., Maret, L., Matsubara, T., Mefodiev, A., Minamino, A., Mineev, O., Mitev, G., Nessi, M., Nicola, L., Noah, E., Parsa, S., Petkov, G., Sanchez, F., Sgalaberna, D., Shorrock, W., Skwarczynski, K., Suvorov, S., Teklu, A., Tsenov, R., Uchida, Y., Vankova-Kirilova, G., Yershov, N., Yokoyama, M., Zalipska, J., Ye, Zou, Zurek, W., Blondel, A., Bogomilov, M., Bordoni, S., Cadoux, F., Douqa, D., Dugas, K., Ekelöf, Tord, Favre, Y., Fedotov, S., Fransson, Kjell, Fujita, R., Gramstad, E., Ichikawa, A. K., Ilieva, S., Iwamoto, K., Jesus-Valls, C., Jung, C. K., Kasetti, S. P., Khabibullin, M., Khotjantsev, A., Korzenev, A., Kostin, A., Kudenko, Y., Kutter, T., Lux, T., Maret, L., Matsubara, T., Mefodiev, A., Minamino, A., Mineev, O., Mitev, G., Nessi, M., Nicola, L., Noah, E., Parsa, S., Petkov, G., Sanchez, F., Sgalaberna, D., Shorrock, W., Skwarczynski, K., Suvorov, S., Teklu, A., Tsenov, R., Uchida, Y., Vankova-Kirilova, G., Yershov, N., Yokoyama, M., Zalipska, J., Ye, Zou, and Zurek, W.
- Abstract
A novel scintillator detector, the SuperFGD, has been selected as the main neutrino target for an upgrade of the T2K experiment ND280 near detector. The detector design will allow nearly 47r coverage for neutrino interactions at the near detector and will provide lower energy thresholds, significantly reducing systematic errors for the experiment. The SuperFGD is made of optically-isolated scintillator cubes of size 10 x 10 x 10 mm(3), providing the required spatial and energy resolution to reduce systematic uncertainties for future T2K runs. The SuperFGD for T2K will have close to two million cubes in a 1920 x 560 x 1840 mm(3) volume. A prototype made of 24 x 8 x 48 cubes was tested at a charged particle beamline at the CERN PS facility. The SuperFGD Prototype was instrumented with readout electronics similar to the future implementation for T2K. Results on electronics and detector response are reported in this paper, along with a discussion of the 3D reconstruction capabilities of this type of detector. Several physics analyses with the prototype data are also discussed, including a study of stopping protons.
- Published
- 2020
- Full Text
- View/download PDF
29. The ABC130 barrel module prototyping programme for the ATLAS strip tracker
- Author
-
Poley, L., Sawyer, C., Addepalli, S., Affolder, A. A., Allongue, B., Allport, P., Anderssen, E., Anghinolfi, F., Arguin, J-F, Arling, J-H, Arnaez, O., Asbah, N. A., Ashby, J., Asimakopoulou, Eleni M., Atlay, N. B., Bartsch, L., Basso, M. J., Beacham, J., Beaupre, S. L., Beck, G., Beichert, C., Bergsten, L., Bernabeu, J., Bhattarai, P., Bloch, I, Blue, A. J., Bochenek, M., Botte, J., Boynton, L., Brenner, Richard, Brueers, B., Buchanan, E., Bullard, B., Capocasa, F., Carr, I, Carra, S., Chao, C. W., Chen, J., Chen, L., Chen, Y., Chen, X., Cindro, V, Ciocio, A., Civera, J. , V, Cormier, K., Cornell, E., Crick, B., Dabrowski, W., Dam, M., David, C., Demontigny, G., Dette, K., DeWitt, J., Diez, S., Doherty, F., Dopke, J., Dressnandt, N., Edwards, S., Fadeyev, V, Farrington, S., Fawcett, W., Fernandez-Tejero, J., Filmer, E., Fleta, C., Gallop, B., Galloway, Z., Argos, C. Garcia, Garg, D., Gignac, M., Gillberg, D., Giovinazzo, D., Glover, J., Goettlicher, P., Gonella, L., Gorisek, A., Grant, C., Grant, F., Gray, C., Greenall, A., Gregor, I, Greig, G., Grillo, A. A., Gu, S., Guescini, F., da Costa, J. Barreiro Guimaraes, Gunnell, J., Gupta, R., Haber, C., Halgheri, A., Hamersly, D., Haugen, T. E., Hauser, M., Heim, S., Heim, T., Helling, C., Herde, H., Hessey, N. P., Hommels, B., Hoenig, J. C., Hunter, A., Jackson, P., Jewkes, K., John, J. J., Johnson, T. A., Jones, T., Kachiguin, S., Kang, N., Kaplon, J., Kareem, M., Keener, P., Keller, J., Key-Charriere, M., Kilani, S., Kisliuk, D., Klein, C. T., Koffas, T., Kramberger, G., Krizka, K., Kroll, J., Kuehn, S., Kurth, M., Labitan, C., Lacasta, C., Lacker, H., Leon, P., Li, B., Li, C., Li, Y., Li, Z., Liang, Z., Liberatore, M., Lister, A., Liu, K., Liu, P., Lohse, T., Loenker, J., Lou, X., Lu, W., Luce, Z., Lynn, D., MacFadyen, R., Maegdefessel, S., Mahboubi, K., Malik, U., Mandic, I, La Marra, D., Martin, J., Martinez-Mckinney, F., Mikestikova, M., Mikuz, M., Mitra, A., Mladina, E., Montalbano, A., Monzat, D., Morii, M., Mullier, G., Neundorf, J., Newcomer, M., Ng, Y., Nikolica, A., Nikolopoulos, K., Oechsle, J., Oliver, J., Orr, R. S., Ottino, G., Paillard, C., Pani, P., Paowell, S., Parzefall, U., Phillips, P. W., Platero, A., Platero, V, Prahl, V, Pyatt, S., Ran, K., Reardon, N., Rehnisch, L., Renardi, A., Renzmann, M., Rifki, O., Rodriguez, A. Rodriguez, Rosin, G., Rossi, E., Ruggeri, T., Ruehr, F., Rymaszewski, P., Sadrozinski, H. F-W, Sanethavong, P., Santpur, S. Neha, Scharf, C., Schillaci, Z., Schmitt, S., Sharma, A., Sciolla, G., Seiden, A., Shi, X., Simpson-Allsop, C., Snoek, H., Snow, S., Solaz, C., Soldevila, U., Sousa, F., Sperlich, D., Staats, E., Stack, T. L., Stanitzki, M., Starinsky, N., Steentoft, Jonas, Stegler, M., Stelzer, B., Stucci, S., Swientek, K., Taylor, G. N., Taylor, W., Teoh, J. Jian, Teuscher, R., Thomas, J., Tigchelaar, A., Tran, T., Tricoli, A., Trischuk, D. A., Unno, Y., van Nieuwenhuizen, G., Ullan, M., Vermeulen, J., Leitao, P. Vicente, Vickey, T., Vidal, G., Vreeswijk, M., Warren, M., Weidberg, T., Wiehe, M., Wiglesworth, C., Wiik-Fuchs, L., Williams, S., Wilson, J., Witharm, R., Wizemann, F., Wonsak, S., Worm, S., Wormald, M., Xella, S., Yang, Y., Yarwick, J., Yu, T., Zhang, D., Zhang, K., Zhou, M., Zhu, H., Poley, L., Sawyer, C., Addepalli, S., Affolder, A. A., Allongue, B., Allport, P., Anderssen, E., Anghinolfi, F., Arguin, J-F, Arling, J-H, Arnaez, O., Asbah, N. A., Ashby, J., Asimakopoulou, Eleni M., Atlay, N. B., Bartsch, L., Basso, M. J., Beacham, J., Beaupre, S. L., Beck, G., Beichert, C., Bergsten, L., Bernabeu, J., Bhattarai, P., Bloch, I, Blue, A. J., Bochenek, M., Botte, J., Boynton, L., Brenner, Richard, Brueers, B., Buchanan, E., Bullard, B., Capocasa, F., Carr, I, Carra, S., Chao, C. W., Chen, J., Chen, L., Chen, Y., Chen, X., Cindro, V, Ciocio, A., Civera, J. , V, Cormier, K., Cornell, E., Crick, B., Dabrowski, W., Dam, M., David, C., Demontigny, G., Dette, K., DeWitt, J., Diez, S., Doherty, F., Dopke, J., Dressnandt, N., Edwards, S., Fadeyev, V, Farrington, S., Fawcett, W., Fernandez-Tejero, J., Filmer, E., Fleta, C., Gallop, B., Galloway, Z., Argos, C. Garcia, Garg, D., Gignac, M., Gillberg, D., Giovinazzo, D., Glover, J., Goettlicher, P., Gonella, L., Gorisek, A., Grant, C., Grant, F., Gray, C., Greenall, A., Gregor, I, Greig, G., Grillo, A. A., Gu, S., Guescini, F., da Costa, J. Barreiro Guimaraes, Gunnell, J., Gupta, R., Haber, C., Halgheri, A., Hamersly, D., Haugen, T. E., Hauser, M., Heim, S., Heim, T., Helling, C., Herde, H., Hessey, N. P., Hommels, B., Hoenig, J. C., Hunter, A., Jackson, P., Jewkes, K., John, J. J., Johnson, T. A., Jones, T., Kachiguin, S., Kang, N., Kaplon, J., Kareem, M., Keener, P., Keller, J., Key-Charriere, M., Kilani, S., Kisliuk, D., Klein, C. T., Koffas, T., Kramberger, G., Krizka, K., Kroll, J., Kuehn, S., Kurth, M., Labitan, C., Lacasta, C., Lacker, H., Leon, P., Li, B., Li, C., Li, Y., Li, Z., Liang, Z., Liberatore, M., Lister, A., Liu, K., Liu, P., Lohse, T., Loenker, J., Lou, X., Lu, W., Luce, Z., Lynn, D., MacFadyen, R., Maegdefessel, S., Mahboubi, K., Malik, U., Mandic, I, La Marra, D., Martin, J., Martinez-Mckinney, F., Mikestikova, M., Mikuz, M., Mitra, A., Mladina, E., Montalbano, A., Monzat, D., Morii, M., Mullier, G., Neundorf, J., Newcomer, M., Ng, Y., Nikolica, A., Nikolopoulos, K., Oechsle, J., Oliver, J., Orr, R. S., Ottino, G., Paillard, C., Pani, P., Paowell, S., Parzefall, U., Phillips, P. W., Platero, A., Platero, V, Prahl, V, Pyatt, S., Ran, K., Reardon, N., Rehnisch, L., Renardi, A., Renzmann, M., Rifki, O., Rodriguez, A. Rodriguez, Rosin, G., Rossi, E., Ruggeri, T., Ruehr, F., Rymaszewski, P., Sadrozinski, H. F-W, Sanethavong, P., Santpur, S. Neha, Scharf, C., Schillaci, Z., Schmitt, S., Sharma, A., Sciolla, G., Seiden, A., Shi, X., Simpson-Allsop, C., Snoek, H., Snow, S., Solaz, C., Soldevila, U., Sousa, F., Sperlich, D., Staats, E., Stack, T. L., Stanitzki, M., Starinsky, N., Steentoft, Jonas, Stegler, M., Stelzer, B., Stucci, S., Swientek, K., Taylor, G. N., Taylor, W., Teoh, J. Jian, Teuscher, R., Thomas, J., Tigchelaar, A., Tran, T., Tricoli, A., Trischuk, D. A., Unno, Y., van Nieuwenhuizen, G., Ullan, M., Vermeulen, J., Leitao, P. Vicente, Vickey, T., Vidal, G., Vreeswijk, M., Warren, M., Weidberg, T., Wiehe, M., Wiglesworth, C., Wiik-Fuchs, L., Williams, S., Wilson, J., Witharm, R., Wizemann, F., Wonsak, S., Worm, S., Wormald, M., Xella, S., Yang, Y., Yarwick, J., Yu, T., Zhang, D., Zhang, K., Zhou, M., and Zhu, H.
- Abstract
For the Phase-II Upgrade of the ATLAS Detector [1], its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100% silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-250) [2, 3] and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.
- Published
- 2020
- Full Text
- View/download PDF
30. The ABC130 barrel module prototyping programme for the ATLAS strip tracker
- Author
-
Poley, L., Sawyer, C., Addepalli, S., Affolder, A. A., Allongue, B., Allport, P., Anderssen, E., Anghinolfi, F., Arguin, J-F, Arling, J-H, Arnaez, O., Asbah, N. A., Ashby, J., Asimakopoulou, Eleni M., Atlay, N. B., Bartsch, L., Basso, M. J., Beacham, J., Beaupre, S. L., Beck, G., Beichert, C., Bergsten, L., Bernabeu, J., Bhattarai, P., Bloch, I, Blue, A. J., Bochenek, M., Botte, J., Boynton, L., Brenner, Richard, Brueers, B., Buchanan, E., Bullard, B., Capocasa, F., Carr, I, Carra, S., Chao, C. W., Chen, J., Chen, L., Chen, Y., Chen, X., Cindro, V, Ciocio, A., Civera, J. , V, Cormier, K., Cornell, E., Crick, B., Dabrowski, W., Dam, M., David, C., Demontigny, G., Dette, K., DeWitt, J., Diez, S., Doherty, F., Dopke, J., Dressnandt, N., Edwards, S., Fadeyev, V, Farrington, S., Fawcett, W., Fernandez-Tejero, J., Filmer, E., Fleta, C., Gallop, B., Galloway, Z., Argos, C. Garcia, Garg, D., Gignac, M., Gillberg, D., Giovinazzo, D., Glover, J., Goettlicher, P., Gonella, L., Gorisek, A., Grant, C., Grant, F., Gray, C., Greenall, A., Gregor, I, Greig, G., Grillo, A. A., Gu, S., Guescini, F., da Costa, J. Barreiro Guimaraes, Gunnell, J., Gupta, R., Haber, C., Halgheri, A., Hamersly, D., Haugen, T. E., Hauser, M., Heim, S., Heim, T., Helling, C., Herde, H., Hessey, N. P., Hommels, B., Hoenig, J. C., Hunter, A., Jackson, P., Jewkes, K., John, J. J., Johnson, T. A., Jones, T., Kachiguin, S., Kang, N., Kaplon, J., Kareem, M., Keener, P., Keller, J., Key-Charriere, M., Kilani, S., Kisliuk, D., Klein, C. T., Koffas, T., Kramberger, G., Krizka, K., Kroll, J., Kuehn, S., Kurth, M., Labitan, C., Lacasta, C., Lacker, H., Leon, P., Li, B., Li, C., Li, Y., Li, Z., Liang, Z., Liberatore, M., Lister, A., Liu, K., Liu, P., Lohse, T., Loenker, J., Lou, X., Lu, W., Luce, Z., Lynn, D., MacFadyen, R., Maegdefessel, S., Mahboubi, K., Malik, U., Mandic, I, La Marra, D., Martin, J., Martinez-Mckinney, F., Mikestikova, M., Mikuz, M., Mitra, A., Mladina, E., Montalbano, A., Monzat, D., Morii, M., Mullier, G., Neundorf, J., Newcomer, M., Ng, Y., Nikolica, A., Nikolopoulos, K., Oechsle, J., Oliver, J., Orr, R. S., Ottino, G., Paillard, C., Pani, P., Paowell, S., Parzefall, U., Phillips, P. W., Platero, A., Platero, V, Prahl, V, Pyatt, S., Ran, K., Reardon, N., Rehnisch, L., Renardi, A., Renzmann, M., Rifki, O., Rodriguez, A. Rodriguez, Rosin, G., Rossi, E., Ruggeri, T., Ruehr, F., Rymaszewski, P., Sadrozinski, H. F-W, Sanethavong, P., Santpur, S. Neha, Scharf, C., Schillaci, Z., Schmitt, S., Sharma, A., Sciolla, G., Seiden, A., Shi, X., Simpson-Allsop, C., Snoek, H., Snow, S., Solaz, C., Soldevila, U., Sousa, F., Sperlich, D., Staats, E., Stack, T. L., Stanitzki, M., Starinsky, N., Steentoft, Jonas, Stegler, M., Stelzer, B., Stucci, S., Swientek, K., Taylor, G. N., Taylor, W., Teoh, J. Jian, Teuscher, R., Thomas, J., Tigchelaar, A., Tran, T., Tricoli, A., Trischuk, D. A., Unno, Y., van Nieuwenhuizen, G., Ullan, M., Vermeulen, J., Leitao, P. Vicente, Vickey, T., Vidal, G., Vreeswijk, M., Warren, M., Weidberg, T., Wiehe, M., Wiglesworth, C., Wiik-Fuchs, L., Williams, S., Wilson, J., Witharm, R., Wizemann, F., Wonsak, S., Worm, S., Wormald, M., Xella, S., Yang, Y., Yarwick, J., Yu, T., Zhang, D., Zhang, K., Zhou, M., Zhu, H., Poley, L., Sawyer, C., Addepalli, S., Affolder, A. A., Allongue, B., Allport, P., Anderssen, E., Anghinolfi, F., Arguin, J-F, Arling, J-H, Arnaez, O., Asbah, N. A., Ashby, J., Asimakopoulou, Eleni M., Atlay, N. B., Bartsch, L., Basso, M. J., Beacham, J., Beaupre, S. L., Beck, G., Beichert, C., Bergsten, L., Bernabeu, J., Bhattarai, P., Bloch, I, Blue, A. J., Bochenek, M., Botte, J., Boynton, L., Brenner, Richard, Brueers, B., Buchanan, E., Bullard, B., Capocasa, F., Carr, I, Carra, S., Chao, C. W., Chen, J., Chen, L., Chen, Y., Chen, X., Cindro, V, Ciocio, A., Civera, J. , V, Cormier, K., Cornell, E., Crick, B., Dabrowski, W., Dam, M., David, C., Demontigny, G., Dette, K., DeWitt, J., Diez, S., Doherty, F., Dopke, J., Dressnandt, N., Edwards, S., Fadeyev, V, Farrington, S., Fawcett, W., Fernandez-Tejero, J., Filmer, E., Fleta, C., Gallop, B., Galloway, Z., Argos, C. Garcia, Garg, D., Gignac, M., Gillberg, D., Giovinazzo, D., Glover, J., Goettlicher, P., Gonella, L., Gorisek, A., Grant, C., Grant, F., Gray, C., Greenall, A., Gregor, I, Greig, G., Grillo, A. A., Gu, S., Guescini, F., da Costa, J. Barreiro Guimaraes, Gunnell, J., Gupta, R., Haber, C., Halgheri, A., Hamersly, D., Haugen, T. E., Hauser, M., Heim, S., Heim, T., Helling, C., Herde, H., Hessey, N. P., Hommels, B., Hoenig, J. C., Hunter, A., Jackson, P., Jewkes, K., John, J. J., Johnson, T. A., Jones, T., Kachiguin, S., Kang, N., Kaplon, J., Kareem, M., Keener, P., Keller, J., Key-Charriere, M., Kilani, S., Kisliuk, D., Klein, C. T., Koffas, T., Kramberger, G., Krizka, K., Kroll, J., Kuehn, S., Kurth, M., Labitan, C., Lacasta, C., Lacker, H., Leon, P., Li, B., Li, C., Li, Y., Li, Z., Liang, Z., Liberatore, M., Lister, A., Liu, K., Liu, P., Lohse, T., Loenker, J., Lou, X., Lu, W., Luce, Z., Lynn, D., MacFadyen, R., Maegdefessel, S., Mahboubi, K., Malik, U., Mandic, I, La Marra, D., Martin, J., Martinez-Mckinney, F., Mikestikova, M., Mikuz, M., Mitra, A., Mladina, E., Montalbano, A., Monzat, D., Morii, M., Mullier, G., Neundorf, J., Newcomer, M., Ng, Y., Nikolica, A., Nikolopoulos, K., Oechsle, J., Oliver, J., Orr, R. S., Ottino, G., Paillard, C., Pani, P., Paowell, S., Parzefall, U., Phillips, P. W., Platero, A., Platero, V, Prahl, V, Pyatt, S., Ran, K., Reardon, N., Rehnisch, L., Renardi, A., Renzmann, M., Rifki, O., Rodriguez, A. Rodriguez, Rosin, G., Rossi, E., Ruggeri, T., Ruehr, F., Rymaszewski, P., Sadrozinski, H. F-W, Sanethavong, P., Santpur, S. Neha, Scharf, C., Schillaci, Z., Schmitt, S., Sharma, A., Sciolla, G., Seiden, A., Shi, X., Simpson-Allsop, C., Snoek, H., Snow, S., Solaz, C., Soldevila, U., Sousa, F., Sperlich, D., Staats, E., Stack, T. L., Stanitzki, M., Starinsky, N., Steentoft, Jonas, Stegler, M., Stelzer, B., Stucci, S., Swientek, K., Taylor, G. N., Taylor, W., Teoh, J. Jian, Teuscher, R., Thomas, J., Tigchelaar, A., Tran, T., Tricoli, A., Trischuk, D. A., Unno, Y., van Nieuwenhuizen, G., Ullan, M., Vermeulen, J., Leitao, P. Vicente, Vickey, T., Vidal, G., Vreeswijk, M., Warren, M., Weidberg, T., Wiehe, M., Wiglesworth, C., Wiik-Fuchs, L., Williams, S., Wilson, J., Witharm, R., Wizemann, F., Wonsak, S., Worm, S., Wormald, M., Xella, S., Yang, Y., Yarwick, J., Yu, T., Zhang, D., Zhang, K., Zhou, M., and Zhu, H.
- Abstract
For the Phase-II Upgrade of the ATLAS Detector [1], its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100% silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-250) [2, 3] and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.
- Published
- 2020
- Full Text
- View/download PDF
31. The ABC130 barrel module prototyping programme for the ATLAS strip tracker
- Author
-
Poley, L, Poley, L, Sawyer, C, Addepalli, S, Affolder, AA, Allongue, B, Allport, P, Anderssen, E, Anghinolfi, F, Arguin, JF, Arling, JH, Arnaez, O, Asbah, NA, Ashby, J, Asimakopoulou, EM, Atlay, NB, Bartsch, L, Basso, MJ, Beacham, J, Beaupré, SL, Beck, G, Beichert, C, Bergsten, L, Bernabeu, J, Bhattarai, P, Bloch, I, Blue, AJ, Bochenek, M, Botte, J, Boynton, L, Brenner, R, Brueers, B, Buchanan, E, Bullard, B, Capocasa, F, Carr, I, Carra, S, Chao, CW, Chen, J, Chen, L, Chen, Y, Chen, X, Cindro, V, Ciocio, A, Civera, JV, Cormier, K, Cornell, E, Crick, B, Dabrowski, W, Dam, M, David, C, Demontigny, G, Dette, K, Dewitt, J, Diez, S, Doherty, F, Dopke, J, Dressnandt, N, Edwards, S, Fadeyev, V, Farrington, S, Fawcett, W, Fernandez-Tejero, J, Filmer, E, Fleta, C, Gallop, B, Galloway, Z, Argos, CG, Garg, D, Gignac, M, Gillberg, D, Giovinazzo, D, Glover, J, Goettlicher, P, Gonella, L, Gorišek, A, Grant, C, Grant, F, Gray, C, Greenall, A, Gregor, I, Greig, G, Grillo, AA, Gu, S, Guescini, F, Costa, JBGD, Gunnell, J, Gupta, R, Haber, C, Halgheri, A, Hamersly, D, Haugen, TE, Hauser, M, Heim, S, Heim, T, Helling, C, Herde, H, Hessey, NP, Hommels, B, Hönig, JC, Hunter, A, Poley, L, Poley, L, Sawyer, C, Addepalli, S, Affolder, AA, Allongue, B, Allport, P, Anderssen, E, Anghinolfi, F, Arguin, JF, Arling, JH, Arnaez, O, Asbah, NA, Ashby, J, Asimakopoulou, EM, Atlay, NB, Bartsch, L, Basso, MJ, Beacham, J, Beaupré, SL, Beck, G, Beichert, C, Bergsten, L, Bernabeu, J, Bhattarai, P, Bloch, I, Blue, AJ, Bochenek, M, Botte, J, Boynton, L, Brenner, R, Brueers, B, Buchanan, E, Bullard, B, Capocasa, F, Carr, I, Carra, S, Chao, CW, Chen, J, Chen, L, Chen, Y, Chen, X, Cindro, V, Ciocio, A, Civera, JV, Cormier, K, Cornell, E, Crick, B, Dabrowski, W, Dam, M, David, C, Demontigny, G, Dette, K, Dewitt, J, Diez, S, Doherty, F, Dopke, J, Dressnandt, N, Edwards, S, Fadeyev, V, Farrington, S, Fawcett, W, Fernandez-Tejero, J, Filmer, E, Fleta, C, Gallop, B, Galloway, Z, Argos, CG, Garg, D, Gignac, M, Gillberg, D, Giovinazzo, D, Glover, J, Goettlicher, P, Gonella, L, Gorišek, A, Grant, C, Grant, F, Gray, C, Greenall, A, Gregor, I, Greig, G, Grillo, AA, Gu, S, Guescini, F, Costa, JBGD, Gunnell, J, Gupta, R, Haber, C, Halgheri, A, Hamersly, D, Haugen, TE, Hauser, M, Heim, S, Heim, T, Helling, C, Herde, H, Hessey, NP, Hommels, B, Hönig, JC, and Hunter, A
- Abstract
For the Phase-II Upgrade of the ATLAS Detector [1], its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100% silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: An early program using readout chips designed using a 250 nm fabrication process (ABCN-250) [2,2] and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.
- Published
- 2020
32. FPGA-based algorithms for feature extraction in the PANDA shashlyk calorimeter
- Author
-
Preston, Markus, Marciniewski, Pawel, Tegnér, Per-Erik, Preston, Markus, Marciniewski, Pawel, and Tegnér, Per-Erik
- Abstract
PANDA is one of the four experimental pillars of the upcoming FAIR facility in Darmstadt, Germany. In PANDA, an antiproton beam with an energy between 1.5 and 15 GeV/c will interact in a hydrogen or nuclear target, allowing for studies of various aspects of non-perturbative QCD . Motivated by the high interaction rates and the diverse physics goals of the experiment, a triggerless readout approach will be employed. In this approach, each detector subsystem will be equipped with intelligent front-end electronics that independently identify signals of interest in real time. In order to detect the most forward-directed photons, electrons and positrons in PANDA, a shashlyk-type calorimeter is being constructed. This detector consists of 1512 individual cells of interleaved plastic scintillators and lead plates, and the output signals will be digitised by sampling ADCs and processed in real time by FPGAs. As part of the triggerless approach, these FPGAs will perform so-called feature extraction on the digitised signals, where the pulse-height and time of incoming pulses are extracted in real time. A substantial pile-up rate is expected, and it is foreseen that the chosen algorithm should enable reconstruction of such events. In this work we present the development of a real-time algorithm based on the well known Optimal Filter, which both improves the overall time resolution of the shashlyk detector and allows reconstruction of pile-up events with good time and energy resolution.
- Published
- 2020
- Full Text
- View/download PDF
33. The ProtoDUNE-SP LArTPC electronics production, commissioning, and performance
- Author
-
Adams, D, Bass, M, Bishai, M, Bromberg, C, Calcutt, J, Chen, H, Fried, J, Furic, I, Gao, S, Gastler, D, Hugon, J, Joshi, J, Kirby, B, Liu, F, Mahn, K, Mooney, M, Morris, C, Pereyra, C, Pons, X, Radeka, V, Raguzin, E, Shooltz, D, Spanu, M, Timilsina, A, Tufanli, S, Tzanov, M, Viren, B, Gu, W, Williams, Z, Wood, K, Worcester, E, Worcester, M, Yang, G, Zhang, J, Adams D., Bass M., Bishai M., Bromberg C., Calcutt J., Chen H., Fried J., Furic I., Gao S., Gastler D., Hugon J., Joshi J., Kirby B., Liu F., Mahn K., Mooney M., Morris C., Pereyra C., Pons X., Radeka V., Raguzin E., Shooltz D., Spanu M., Timilsina A., Tufanli S., Tzanov M., Viren B., Gu W., Williams Z., Wood K., Worcester E., Worcester M., Yang G., Zhang J., Adams, D, Bass, M, Bishai, M, Bromberg, C, Calcutt, J, Chen, H, Fried, J, Furic, I, Gao, S, Gastler, D, Hugon, J, Joshi, J, Kirby, B, Liu, F, Mahn, K, Mooney, M, Morris, C, Pereyra, C, Pons, X, Radeka, V, Raguzin, E, Shooltz, D, Spanu, M, Timilsina, A, Tufanli, S, Tzanov, M, Viren, B, Gu, W, Williams, Z, Wood, K, Worcester, E, Worcester, M, Yang, G, Zhang, J, Adams D., Bass M., Bishai M., Bromberg C., Calcutt J., Chen H., Fried J., Furic I., Gao S., Gastler D., Hugon J., Joshi J., Kirby B., Liu F., Mahn K., Mooney M., Morris C., Pereyra C., Pons X., Radeka V., Raguzin E., Shooltz D., Spanu M., Timilsina A., Tufanli S., Tzanov M., Viren B., Gu W., Williams Z., Wood K., Worcester E., Worcester M., Yang G., and Zhang J.
- Abstract
The ProtoDUNE-SP detector is a large-scale prototype of the Single-Phase (SP) Liquid Argon Time Projection Chamber (LArTPC) design proposed for the Deep Underground Neutrino Experiment (DUNE). 15,360 LArTPC wires are instrumented with low electronic noise pre-amplifier and digitization ASICs integrated into Front End Motherboards (FEMBs) operating at cryogenic temperature within the cryostat. The large number of electronics channels and high performance specifications required a large-scale production electronics quality control effort, careful installation into Anode Plane Assemblies (APAs), and rigorous detector commissioning. This successful collaboration-wide effort achieved a working LArTPC electronics channel percentage of 99.7% (15,318 of 15,360 channels in total), whose operating performance exceeded expectations. We summarize the ProtoDUNE-SP cold electronics design and quality control, installation, and commissioning efforts that enabled this excellent electronics performance.
- Published
- 2020
34. The SuperFGD Prototype charged particle beam tests
- Author
-
Blondel, A., Bogomilov, M., Bordoni, S., Cadoux, F., Douqa, D., Dugas, K., Ekelöf, Tord, Favre, Y., Fedotov, S., Fransson, Kjell, Fujita, R., Gramstad, E., Ichikawa, A. K., Ilieva, S., Iwamoto, K., Jesus-Valls, C., Jung, C. K., Kasetti, S. P., Khabibullin, M., Khotjantsev, A., Korzenev, A., Kostin, A., Kudenko, Y., Kutter, T., Lux, T., Maret, L., Matsubara, T., Mefodiev, A., Minamino, A., Mineev, O., Mitev, G., Nessi, M., Nicola, L., Noah, E., Parsa, S., Petkov, G., Sanchez, F., Sgalaberna, D., Shorrock, W., Skwarczynski, K., Suvorov, S., Teklu, A., Tsenov, R., Uchida, Y., Vankova-Kirilova, G., Yershov, N., Yokoyama, M., Zalipska, J., Ye, Zou, Zurek, W., Blondel, A., Bogomilov, M., Bordoni, S., Cadoux, F., Douqa, D., Dugas, K., Ekelöf, Tord, Favre, Y., Fedotov, S., Fransson, Kjell, Fujita, R., Gramstad, E., Ichikawa, A. K., Ilieva, S., Iwamoto, K., Jesus-Valls, C., Jung, C. K., Kasetti, S. P., Khabibullin, M., Khotjantsev, A., Korzenev, A., Kostin, A., Kudenko, Y., Kutter, T., Lux, T., Maret, L., Matsubara, T., Mefodiev, A., Minamino, A., Mineev, O., Mitev, G., Nessi, M., Nicola, L., Noah, E., Parsa, S., Petkov, G., Sanchez, F., Sgalaberna, D., Shorrock, W., Skwarczynski, K., Suvorov, S., Teklu, A., Tsenov, R., Uchida, Y., Vankova-Kirilova, G., Yershov, N., Yokoyama, M., Zalipska, J., Ye, Zou, and Zurek, W.
- Abstract
A novel scintillator detector, the SuperFGD, has been selected as the main neutrino target for an upgrade of the T2K experiment ND280 near detector. The detector design will allow nearly 47r coverage for neutrino interactions at the near detector and will provide lower energy thresholds, significantly reducing systematic errors for the experiment. The SuperFGD is made of optically-isolated scintillator cubes of size 10 x 10 x 10 mm(3), providing the required spatial and energy resolution to reduce systematic uncertainties for future T2K runs. The SuperFGD for T2K will have close to two million cubes in a 1920 x 560 x 1840 mm(3) volume. A prototype made of 24 x 8 x 48 cubes was tested at a charged particle beamline at the CERN PS facility. The SuperFGD Prototype was instrumented with readout electronics similar to the future implementation for T2K. Results on electronics and detector response are reported in this paper, along with a discussion of the 3D reconstruction capabilities of this type of detector. Several physics analyses with the prototype data are also discussed, including a study of stopping protons.
- Published
- 2020
- Full Text
- View/download PDF
35. Cryogenic characterization of 180 nm CMOS technology at 100 mK
- Author
-
Huang, RG, Huang, RG, Gnani, D, Grace, C, Kolomensky, YG, Mei, Y, Papadopoulou, A, Huang, RG, Huang, RG, Gnani, D, Grace, C, Kolomensky, YG, Mei, Y, and Papadopoulou, A
- Abstract
Conventional CMOS technology operated in cryogenic conditions has recently attracted interest for its use in low-noise electronics. We present one of the first characterizations of 180 nm CMOS technology at a temperature of 100 mK, extracting I/V characteristics, threshold voltages, and transconductance values, as well as observing their temperature dependence. We find that CMOS devices remain fully operational down to these temperatures, although we observe hysteresis effects in some devices. The measurements described in this paper can be used to inform the future design of CMOS devices intended to be operated in this deep cryogenic regime.
- Published
- 2020
36. The ABC130 barrel module prototyping programme for the ATLAS strip tracker
- Author
-
Poley, L, Poley, L, Sawyer, C, Addepalli, S, Affolder, AA, Allongue, B, Allport, P, Anderssen, E, Anghinolfi, F, Arguin, JF, Arling, JH, Arnaez, O, Asbah, NA, Ashby, J, Asimakopoulou, EM, Atlay, NB, Bartsch, L, Basso, MJ, Beacham, J, Beaupré, SL, Beck, G, Beichert, C, Bergsten, L, Bernabeu, J, Bhattarai, P, Bloch, I, Blue, AJ, Bochenek, M, Botte, J, Boynton, L, Brenner, R, Brueers, B, Buchanan, E, Bullard, B, Capocasa, F, Carr, I, Carra, S, Chao, CW, Chen, J, Chen, L, Chen, Y, Chen, X, Cindro, V, Ciocio, A, Civera, JV, Cormier, K, Cornell, E, Crick, B, Dabrowski, W, Dam, M, David, C, Demontigny, G, Dette, K, Dewitt, J, Diez, S, Doherty, F, Dopke, J, Dressnandt, N, Edwards, S, Fadeyev, V, Farrington, S, Fawcett, W, Fernandez-Tejero, J, Filmer, E, Fleta, C, Gallop, B, Galloway, Z, Argos, CG, Garg, D, Gignac, M, Gillberg, D, Giovinazzo, D, Glover, J, Goettlicher, P, Gonella, L, Gorišek, A, Grant, C, Grant, F, Gray, C, Greenall, A, Gregor, I, Greig, G, Grillo, AA, Gu, S, Guescini, F, Costa, JBGD, Gunnell, J, Gupta, R, Haber, C, Halgheri, A, Hamersly, D, Haugen, TE, Hauser, M, Heim, S, Heim, T, Helling, C, Herde, H, Hessey, NP, Hommels, B, Hönig, JC, Hunter, A, Poley, L, Poley, L, Sawyer, C, Addepalli, S, Affolder, AA, Allongue, B, Allport, P, Anderssen, E, Anghinolfi, F, Arguin, JF, Arling, JH, Arnaez, O, Asbah, NA, Ashby, J, Asimakopoulou, EM, Atlay, NB, Bartsch, L, Basso, MJ, Beacham, J, Beaupré, SL, Beck, G, Beichert, C, Bergsten, L, Bernabeu, J, Bhattarai, P, Bloch, I, Blue, AJ, Bochenek, M, Botte, J, Boynton, L, Brenner, R, Brueers, B, Buchanan, E, Bullard, B, Capocasa, F, Carr, I, Carra, S, Chao, CW, Chen, J, Chen, L, Chen, Y, Chen, X, Cindro, V, Ciocio, A, Civera, JV, Cormier, K, Cornell, E, Crick, B, Dabrowski, W, Dam, M, David, C, Demontigny, G, Dette, K, Dewitt, J, Diez, S, Doherty, F, Dopke, J, Dressnandt, N, Edwards, S, Fadeyev, V, Farrington, S, Fawcett, W, Fernandez-Tejero, J, Filmer, E, Fleta, C, Gallop, B, Galloway, Z, Argos, CG, Garg, D, Gignac, M, Gillberg, D, Giovinazzo, D, Glover, J, Goettlicher, P, Gonella, L, Gorišek, A, Grant, C, Grant, F, Gray, C, Greenall, A, Gregor, I, Greig, G, Grillo, AA, Gu, S, Guescini, F, Costa, JBGD, Gunnell, J, Gupta, R, Haber, C, Halgheri, A, Hamersly, D, Haugen, TE, Hauser, M, Heim, S, Heim, T, Helling, C, Herde, H, Hessey, NP, Hommels, B, Hönig, JC, and Hunter, A
- Abstract
For the Phase-II Upgrade of the ATLAS Detector [1], its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100% silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: An early program using readout chips designed using a 250 nm fabrication process (ABCN-250) [2,2] and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.
- Published
- 2020
37. The SuperFGD Prototype charged particle beam tests
- Author
-
Blondel, A., Bogomilov, M., Bordoni, S., Cadoux, F., Douqa, D., Dugas, K., Ekelöf, Tord, Favre, Y., Fedotov, S., Fransson, Kjell, Fujita, R., Gramstad, E., Ichikawa, A. K., Ilieva, S., Iwamoto, K., Jesus-Valls, C., Jung, C. K., Kasetti, S. P., Khabibullin, M., Khotjantsev, A., Korzenev, A., Kostin, A., Kudenko, Y., Kutter, T., Lux, T., Maret, L., Matsubara, T., Mefodiev, A., Minamino, A., Mineev, O., Mitev, G., Nessi, M., Nicola, L., Noah, E., Parsa, S., Petkov, G., Sanchez, F., Sgalaberna, D., Shorrock, W., Skwarczynski, K., Suvorov, S., Teklu, A., Tsenov, R., Uchida, Y., Vankova-Kirilova, G., Yershov, N., Yokoyama, M., Zalipska, J., Ye, Zou, Zurek, W., Blondel, A., Bogomilov, M., Bordoni, S., Cadoux, F., Douqa, D., Dugas, K., Ekelöf, Tord, Favre, Y., Fedotov, S., Fransson, Kjell, Fujita, R., Gramstad, E., Ichikawa, A. K., Ilieva, S., Iwamoto, K., Jesus-Valls, C., Jung, C. K., Kasetti, S. P., Khabibullin, M., Khotjantsev, A., Korzenev, A., Kostin, A., Kudenko, Y., Kutter, T., Lux, T., Maret, L., Matsubara, T., Mefodiev, A., Minamino, A., Mineev, O., Mitev, G., Nessi, M., Nicola, L., Noah, E., Parsa, S., Petkov, G., Sanchez, F., Sgalaberna, D., Shorrock, W., Skwarczynski, K., Suvorov, S., Teklu, A., Tsenov, R., Uchida, Y., Vankova-Kirilova, G., Yershov, N., Yokoyama, M., Zalipska, J., Ye, Zou, and Zurek, W.
- Abstract
A novel scintillator detector, the SuperFGD, has been selected as the main neutrino target for an upgrade of the T2K experiment ND280 near detector. The detector design will allow nearly 47r coverage for neutrino interactions at the near detector and will provide lower energy thresholds, significantly reducing systematic errors for the experiment. The SuperFGD is made of optically-isolated scintillator cubes of size 10 x 10 x 10 mm(3), providing the required spatial and energy resolution to reduce systematic uncertainties for future T2K runs. The SuperFGD for T2K will have close to two million cubes in a 1920 x 560 x 1840 mm(3) volume. A prototype made of 24 x 8 x 48 cubes was tested at a charged particle beamline at the CERN PS facility. The SuperFGD Prototype was instrumented with readout electronics similar to the future implementation for T2K. Results on electronics and detector response are reported in this paper, along with a discussion of the 3D reconstruction capabilities of this type of detector. Several physics analyses with the prototype data are also discussed, including a study of stopping protons.
- Published
- 2020
- Full Text
- View/download PDF
38. The ABC130 barrel module prototyping programme for the ATLAS strip tracker
- Author
-
Poley, L., Sawyer, C., Addepalli, S., Affolder, A. A., Allongue, B., Allport, P., Anderssen, E., Anghinolfi, F., Arguin, J-F, Arling, J-H, Arnaez, O., Asbah, N. A., Ashby, J., Asimakopoulou, Eleni M., Atlay, N. B., Bartsch, L., Basso, M. J., Beacham, J., Beaupre, S. L., Beck, G., Beichert, C., Bergsten, L., Bernabeu, J., Bhattarai, P., Bloch, I, Blue, A. J., Bochenek, M., Botte, J., Boynton, L., Brenner, Richard, Brueers, B., Buchanan, E., Bullard, B., Capocasa, F., Carr, I, Carra, S., Chao, C. W., Chen, J., Chen, L., Chen, Y., Chen, X., Cindro, V, Ciocio, A., Civera, J. , V, Cormier, K., Cornell, E., Crick, B., Dabrowski, W., Dam, M., David, C., Demontigny, G., Dette, K., DeWitt, J., Diez, S., Doherty, F., Dopke, J., Dressnandt, N., Edwards, S., Fadeyev, V, Farrington, S., Fawcett, W., Fernandez-Tejero, J., Filmer, E., Fleta, C., Gallop, B., Galloway, Z., Argos, C. Garcia, Garg, D., Gignac, M., Gillberg, D., Giovinazzo, D., Glover, J., Goettlicher, P., Gonella, L., Gorisek, A., Grant, C., Grant, F., Gray, C., Greenall, A., Gregor, I, Greig, G., Grillo, A. A., Gu, S., Guescini, F., da Costa, J. Barreiro Guimaraes, Gunnell, J., Gupta, R., Haber, C., Halgheri, A., Hamersly, D., Haugen, T. E., Hauser, M., Heim, S., Heim, T., Helling, C., Herde, H., Hessey, N. P., Hommels, B., Hoenig, J. C., Hunter, A., Jackson, P., Jewkes, K., John, J. J., Johnson, T. A., Jones, T., Kachiguin, S., Kang, N., Kaplon, J., Kareem, M., Keener, P., Keller, J., Key-Charriere, M., Kilani, S., Kisliuk, D., Klein, C. T., Koffas, T., Kramberger, G., Krizka, K., Kroll, J., Kuehn, S., Kurth, M., Labitan, C., Lacasta, C., Lacker, H., Leon, P., Li, B., Li, C., Li, Y., Li, Z., Liang, Z., Liberatore, M., Lister, A., Liu, K., Liu, P., Lohse, T., Loenker, J., Lou, X., Lu, W., Luce, Z., Lynn, D., MacFadyen, R., Maegdefessel, S., Mahboubi, K., Malik, U., Mandic, I, La Marra, D., Martin, J., Martinez-Mckinney, F., Mikestikova, M., Mikuz, M., Mitra, A., Mladina, E., Montalbano, A., Monzat, D., Morii, M., Mullier, G., Neundorf, J., Newcomer, M., Ng, Y., Nikolica, A., Nikolopoulos, K., Oechsle, J., Oliver, J., Orr, R. S., Ottino, G., Paillard, C., Pani, P., Paowell, S., Parzefall, U., Phillips, P. W., Platero, A., Platero, V, Prahl, V, Pyatt, S., Ran, K., Reardon, N., Rehnisch, L., Renardi, A., Renzmann, M., Rifki, O., Rodriguez, A. Rodriguez, Rosin, G., Rossi, E., Ruggeri, T., Ruehr, F., Rymaszewski, P., Sadrozinski, H. F-W, Sanethavong, P., Santpur, S. Neha, Scharf, C., Schillaci, Z., Schmitt, S., Sharma, A., Sciolla, G., Seiden, A., Shi, X., Simpson-Allsop, C., Snoek, H., Snow, S., Solaz, C., Soldevila, U., Sousa, F., Sperlich, D., Staats, E., Stack, T. L., Stanitzki, M., Starinsky, N., Steentoft, Jonas, Stegler, M., Stelzer, B., Stucci, S., Swientek, K., Taylor, G. N., Taylor, W., Teoh, J. Jian, Teuscher, R., Thomas, J., Tigchelaar, A., Tran, T., Tricoli, A., Trischuk, D. A., Unno, Y., van Nieuwenhuizen, G., Ullan, M., Vermeulen, J., Leitao, P. Vicente, Vickey, T., Vidal, G., Vreeswijk, M., Warren, M., Weidberg, T., Wiehe, M., Wiglesworth, C., Wiik-Fuchs, L., Williams, S., Wilson, J., Witharm, R., Wizemann, F., Wonsak, S., Worm, S., Wormald, M., Xella, S., Yang, Y., Yarwick, J., Yu, T., Zhang, D., Zhang, K., Zhou, M., Zhu, H., Poley, L., Sawyer, C., Addepalli, S., Affolder, A. A., Allongue, B., Allport, P., Anderssen, E., Anghinolfi, F., Arguin, J-F, Arling, J-H, Arnaez, O., Asbah, N. A., Ashby, J., Asimakopoulou, Eleni M., Atlay, N. B., Bartsch, L., Basso, M. J., Beacham, J., Beaupre, S. L., Beck, G., Beichert, C., Bergsten, L., Bernabeu, J., Bhattarai, P., Bloch, I, Blue, A. J., Bochenek, M., Botte, J., Boynton, L., Brenner, Richard, Brueers, B., Buchanan, E., Bullard, B., Capocasa, F., Carr, I, Carra, S., Chao, C. W., Chen, J., Chen, L., Chen, Y., Chen, X., Cindro, V, Ciocio, A., Civera, J. , V, Cormier, K., Cornell, E., Crick, B., Dabrowski, W., Dam, M., David, C., Demontigny, G., Dette, K., DeWitt, J., Diez, S., Doherty, F., Dopke, J., Dressnandt, N., Edwards, S., Fadeyev, V, Farrington, S., Fawcett, W., Fernandez-Tejero, J., Filmer, E., Fleta, C., Gallop, B., Galloway, Z., Argos, C. Garcia, Garg, D., Gignac, M., Gillberg, D., Giovinazzo, D., Glover, J., Goettlicher, P., Gonella, L., Gorisek, A., Grant, C., Grant, F., Gray, C., Greenall, A., Gregor, I, Greig, G., Grillo, A. A., Gu, S., Guescini, F., da Costa, J. Barreiro Guimaraes, Gunnell, J., Gupta, R., Haber, C., Halgheri, A., Hamersly, D., Haugen, T. E., Hauser, M., Heim, S., Heim, T., Helling, C., Herde, H., Hessey, N. P., Hommels, B., Hoenig, J. C., Hunter, A., Jackson, P., Jewkes, K., John, J. J., Johnson, T. A., Jones, T., Kachiguin, S., Kang, N., Kaplon, J., Kareem, M., Keener, P., Keller, J., Key-Charriere, M., Kilani, S., Kisliuk, D., Klein, C. T., Koffas, T., Kramberger, G., Krizka, K., Kroll, J., Kuehn, S., Kurth, M., Labitan, C., Lacasta, C., Lacker, H., Leon, P., Li, B., Li, C., Li, Y., Li, Z., Liang, Z., Liberatore, M., Lister, A., Liu, K., Liu, P., Lohse, T., Loenker, J., Lou, X., Lu, W., Luce, Z., Lynn, D., MacFadyen, R., Maegdefessel, S., Mahboubi, K., Malik, U., Mandic, I, La Marra, D., Martin, J., Martinez-Mckinney, F., Mikestikova, M., Mikuz, M., Mitra, A., Mladina, E., Montalbano, A., Monzat, D., Morii, M., Mullier, G., Neundorf, J., Newcomer, M., Ng, Y., Nikolica, A., Nikolopoulos, K., Oechsle, J., Oliver, J., Orr, R. S., Ottino, G., Paillard, C., Pani, P., Paowell, S., Parzefall, U., Phillips, P. W., Platero, A., Platero, V, Prahl, V, Pyatt, S., Ran, K., Reardon, N., Rehnisch, L., Renardi, A., Renzmann, M., Rifki, O., Rodriguez, A. Rodriguez, Rosin, G., Rossi, E., Ruggeri, T., Ruehr, F., Rymaszewski, P., Sadrozinski, H. F-W, Sanethavong, P., Santpur, S. Neha, Scharf, C., Schillaci, Z., Schmitt, S., Sharma, A., Sciolla, G., Seiden, A., Shi, X., Simpson-Allsop, C., Snoek, H., Snow, S., Solaz, C., Soldevila, U., Sousa, F., Sperlich, D., Staats, E., Stack, T. L., Stanitzki, M., Starinsky, N., Steentoft, Jonas, Stegler, M., Stelzer, B., Stucci, S., Swientek, K., Taylor, G. N., Taylor, W., Teoh, J. Jian, Teuscher, R., Thomas, J., Tigchelaar, A., Tran, T., Tricoli, A., Trischuk, D. A., Unno, Y., van Nieuwenhuizen, G., Ullan, M., Vermeulen, J., Leitao, P. Vicente, Vickey, T., Vidal, G., Vreeswijk, M., Warren, M., Weidberg, T., Wiehe, M., Wiglesworth, C., Wiik-Fuchs, L., Williams, S., Wilson, J., Witharm, R., Wizemann, F., Wonsak, S., Worm, S., Wormald, M., Xella, S., Yang, Y., Yarwick, J., Yu, T., Zhang, D., Zhang, K., Zhou, M., and Zhu, H.
- Abstract
For the Phase-II Upgrade of the ATLAS Detector [1], its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100% silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-250) [2, 3] and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.
- Published
- 2020
- Full Text
- View/download PDF
39. The ProtoDUNE-SP LArTPC electronics production, commissioning, and performance
- Author
-
Adams, D, Bass, M, Bishai, M, Bromberg, C, Calcutt, J, Chen, H, Fried, J, Furic, I, Gao, S, Gastler, D, Hugon, J, Joshi, J, Kirby, B, Liu, F, Mahn, K, Mooney, M, Morris, C, Pereyra, C, Pons, X, Radeka, V, Raguzin, E, Shooltz, D, Spanu, M, Timilsina, A, Tufanli, S, Tzanov, M, Viren, B, Gu, W, Williams, Z, Wood, K, Worcester, E, Worcester, M, Yang, G, Zhang, J, Adams D., Bass M., Bishai M., Bromberg C., Calcutt J., Chen H., Fried J., Furic I., Gao S., Gastler D., Hugon J., Joshi J., Kirby B., Liu F., Mahn K., Mooney M., Morris C., Pereyra C., Pons X., Radeka V., Raguzin E., Shooltz D., Spanu M., Timilsina A., Tufanli S., Tzanov M., Viren B., Gu W., Williams Z., Wood K., Worcester E., Worcester M., Yang G., Zhang J., Adams, D, Bass, M, Bishai, M, Bromberg, C, Calcutt, J, Chen, H, Fried, J, Furic, I, Gao, S, Gastler, D, Hugon, J, Joshi, J, Kirby, B, Liu, F, Mahn, K, Mooney, M, Morris, C, Pereyra, C, Pons, X, Radeka, V, Raguzin, E, Shooltz, D, Spanu, M, Timilsina, A, Tufanli, S, Tzanov, M, Viren, B, Gu, W, Williams, Z, Wood, K, Worcester, E, Worcester, M, Yang, G, Zhang, J, Adams D., Bass M., Bishai M., Bromberg C., Calcutt J., Chen H., Fried J., Furic I., Gao S., Gastler D., Hugon J., Joshi J., Kirby B., Liu F., Mahn K., Mooney M., Morris C., Pereyra C., Pons X., Radeka V., Raguzin E., Shooltz D., Spanu M., Timilsina A., Tufanli S., Tzanov M., Viren B., Gu W., Williams Z., Wood K., Worcester E., Worcester M., Yang G., and Zhang J.
- Abstract
The ProtoDUNE-SP detector is a large-scale prototype of the Single-Phase (SP) Liquid Argon Time Projection Chamber (LArTPC) design proposed for the Deep Underground Neutrino Experiment (DUNE). 15,360 LArTPC wires are instrumented with low electronic noise pre-amplifier and digitization ASICs integrated into Front End Motherboards (FEMBs) operating at cryogenic temperature within the cryostat. The large number of electronics channels and high performance specifications required a large-scale production electronics quality control effort, careful installation into Anode Plane Assemblies (APAs), and rigorous detector commissioning. This successful collaboration-wide effort achieved a working LArTPC electronics channel percentage of 99.7% (15,318 of 15,360 channels in total), whose operating performance exceeded expectations. We summarize the ProtoDUNE-SP cold electronics design and quality control, installation, and commissioning efforts that enabled this excellent electronics performance.
- Published
- 2020
40. The ABC130 barrel module prototyping programme for the ATLAS strip tracker
- Author
-
Poley, L., Sawyer, C., Addepalli, S., Affolder, A. A., Allongue, B., Allport, P., Anderssen, E., Anghinolfi, F., Arguin, J-F, Arling, J-H, Arnaez, O., Asbah, N. A., Ashby, J., Asimakopoulou, E. M., Atlay, N. B., Bartsch, L., Basso, M. J., Beacham, J., Beaupre, S. L., Beck, G., Beichert, C., Bergsten, L., Bernabeu, J., Bhattarai, P., Bloch, Thomsen, Blue, A. J., Bochenek, M., Botte, J., Boynton, L., Brenner, R., Brueers, B., Buchanan, E., Bullard, B., Capocasa, F., Carr, Antony M., Carra, S., Chao, C. W., Chen, J., Chen, L., Chen, Y., Chen, X., Cindro, Ciocio, A., Civera, J., Cormier, K., Cornell, E., Crick, B., Dabrowski, W., Dam, M., David, C., Demontigny, G., Dette, K., DeWitt, J., Diez, S., Doherty, F., Dopke, J., Dressnandt, N., Edwards, S., Fadeyev, Farrington, S., Fawcett, W., Fernandez-Tejero, J., Filmer, E., Fleta, C., Gallop, B., Galloway, Z., Argos, C. Garcia, Garg, D., Gignac, M., Gillberg, D., Giovinazzo, D., Glover, J., Goettlicher, P., Gonella, L., Gorisek, A., Grant, C., Grant, F., Gray, C., Greenall, A., Gregor, Ivan, Greig, G., Grillo, A. A., Gu, S., Guescini, F., da Costa, J. Barreiro Guimaraes, Gunnell, J., Gupta, R., Haber, C., Halgheri, A., Hamersly, D., Haugen, T. E., Hauser, M., Heim, S., Heim, T., Helling, C., Herde, H., Hessey, N. P., Hommels, B., Hoenig, J. C., Hunter, A., Jackson, P., Jewkes, K., John, J. J., Johnson, T. A., Jones, T., Kachiguin, S., Kang, N., Kaplon, J., Kareem, M., Keener, P., Keller, J., Key-Charriere, M., Kilani, S., Kisliuk, D., Klein, C. T., Koffas, T., Kramberger, G., Krizka, K., Kroll, J., Kuehn, S., Kurth, M., Labitan, C., Lacasta, C., Lacker, H., Leon, P., Li, B., Li, C., Li, Y., Li, Z., Liang, Z., Liberatore, M., Lister, A., Liu, K., Liu, P., Lohse, T., Loenker, J., Lou, X., Lu, W., Luce, Z., Lynn, D., MacFadyen, R., Maegdefessel, S., Mahboubi, K., Malik, U., Mandic, V., La Marra, D., Martin, J., Martinez-Mckinney, F., Mikestikova, M., Mikuz, M., Mitra, A., Mladina, E., Montalbano, A., Monzat, D., Morii, M., Mullier, G., Neundorf, J., Newcomer, M., Ng, Y., Nikolica, A., Nikolopoulos, K., Oechsle, J., Oliver, J., Orr, R. S., Ottino, G., Paillard, C., Pani, P., Paowell, S., Parzefall, U., Phillips, P. W., Platero, A., Platero, Gloria, Prahl, Julie, Pyatt, S., Ran, K., Reardon, N., Rehnisch, L., Renardi, A., Renzmann, M., Rifki, O., Rodriguez, A. Rodriguez, Rosin, G., Rossi, E., Ruggeri, T., Ruehr, F., Rymaszewski, P., Sadrozinski, H. F-W, Sanethavong, P., Santpur, S. Neha, Scharf, C., Schillaci, Z., Schmitt, S., Sharma, A., Sciolla, G., Seiden, A., Shi, X., Simpson-Allsop, C., Snoek, H., Snow, S., Solaz, C., Soldevila, U., Sousa, F., Sperlich, D., Staats, E., Stack, T. L., Stanitzki, M., Starinsky, N., Steentoft, J., Stegler, M., Stelzer, B., Stucci, S., Swientek, K., Taylor, G. N., Taylor, W., Teoh, J. Jian, Teuscher, R., Thomas, J., Tigchelaar, A., Tran, T., Tricoli, A., Trischuk, D. A., Unno, Y., van Nieuwenhuizen, G., Ullan, M., Vermeulen, J., Leitao, P. Vicente, Vickey, T., Vidal, G., Vreeswijk, M., Warren, M., Weidberg, T., Wiehe, M., Wiglesworth, C., Wiik-Fuchs, L., Williams, S., Wilson, J., Witharm, R., Wizemann, F., Wonsak, S., Worm, S., Wormald, M., Xella, S., Yang, Y., Yarwick, J., Yu, T., Zhang, D., Zhang, K., Zhou, M., Zhu, H., Poley, L., Sawyer, C., Addepalli, S., Affolder, A. A., Allongue, B., Allport, P., Anderssen, E., Anghinolfi, F., Arguin, J-F, Arling, J-H, Arnaez, O., Asbah, N. A., Ashby, J., Asimakopoulou, E. M., Atlay, N. B., Bartsch, L., Basso, M. J., Beacham, J., Beaupre, S. L., Beck, G., Beichert, C., Bergsten, L., Bernabeu, J., Bhattarai, P., Bloch, Thomsen, Blue, A. J., Bochenek, M., Botte, J., Boynton, L., Brenner, R., Brueers, B., Buchanan, E., Bullard, B., Capocasa, F., Carr, Antony M., Carra, S., Chao, C. W., Chen, J., Chen, L., Chen, Y., Chen, X., Cindro, Ciocio, A., Civera, J., Cormier, K., Cornell, E., Crick, B., Dabrowski, W., Dam, M., David, C., Demontigny, G., Dette, K., DeWitt, J., Diez, S., Doherty, F., Dopke, J., Dressnandt, N., Edwards, S., Fadeyev, Farrington, S., Fawcett, W., Fernandez-Tejero, J., Filmer, E., Fleta, C., Gallop, B., Galloway, Z., Argos, C. Garcia, Garg, D., Gignac, M., Gillberg, D., Giovinazzo, D., Glover, J., Goettlicher, P., Gonella, L., Gorisek, A., Grant, C., Grant, F., Gray, C., Greenall, A., Gregor, Ivan, Greig, G., Grillo, A. A., Gu, S., Guescini, F., da Costa, J. Barreiro Guimaraes, Gunnell, J., Gupta, R., Haber, C., Halgheri, A., Hamersly, D., Haugen, T. E., Hauser, M., Heim, S., Heim, T., Helling, C., Herde, H., Hessey, N. P., Hommels, B., Hoenig, J. C., Hunter, A., Jackson, P., Jewkes, K., John, J. J., Johnson, T. A., Jones, T., Kachiguin, S., Kang, N., Kaplon, J., Kareem, M., Keener, P., Keller, J., Key-Charriere, M., Kilani, S., Kisliuk, D., Klein, C. T., Koffas, T., Kramberger, G., Krizka, K., Kroll, J., Kuehn, S., Kurth, M., Labitan, C., Lacasta, C., Lacker, H., Leon, P., Li, B., Li, C., Li, Y., Li, Z., Liang, Z., Liberatore, M., Lister, A., Liu, K., Liu, P., Lohse, T., Loenker, J., Lou, X., Lu, W., Luce, Z., Lynn, D., MacFadyen, R., Maegdefessel, S., Mahboubi, K., Malik, U., Mandic, V., La Marra, D., Martin, J., Martinez-Mckinney, F., Mikestikova, M., Mikuz, M., Mitra, A., Mladina, E., Montalbano, A., Monzat, D., Morii, M., Mullier, G., Neundorf, J., Newcomer, M., Ng, Y., Nikolica, A., Nikolopoulos, K., Oechsle, J., Oliver, J., Orr, R. S., Ottino, G., Paillard, C., Pani, P., Paowell, S., Parzefall, U., Phillips, P. W., Platero, A., Platero, Gloria, Prahl, Julie, Pyatt, S., Ran, K., Reardon, N., Rehnisch, L., Renardi, A., Renzmann, M., Rifki, O., Rodriguez, A. Rodriguez, Rosin, G., Rossi, E., Ruggeri, T., Ruehr, F., Rymaszewski, P., Sadrozinski, H. F-W, Sanethavong, P., Santpur, S. Neha, Scharf, C., Schillaci, Z., Schmitt, S., Sharma, A., Sciolla, G., Seiden, A., Shi, X., Simpson-Allsop, C., Snoek, H., Snow, S., Solaz, C., Soldevila, U., Sousa, F., Sperlich, D., Staats, E., Stack, T. L., Stanitzki, M., Starinsky, N., Steentoft, J., Stegler, M., Stelzer, B., Stucci, S., Swientek, K., Taylor, G. N., Taylor, W., Teoh, J. Jian, Teuscher, R., Thomas, J., Tigchelaar, A., Tran, T., Tricoli, A., Trischuk, D. A., Unno, Y., van Nieuwenhuizen, G., Ullan, M., Vermeulen, J., Leitao, P. Vicente, Vickey, T., Vidal, G., Vreeswijk, M., Warren, M., Weidberg, T., Wiehe, M., Wiglesworth, C., Wiik-Fuchs, L., Williams, S., Wilson, J., Witharm, R., Wizemann, F., Wonsak, S., Worm, S., Wormald, M., Xella, S., Yang, Y., Yarwick, J., Yu, T., Zhang, D., Zhang, K., Zhou, M., and Zhu, H.
- Abstract
For the Phase-II Upgrade of the ATLAS Detector [1], its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100% silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-250) [2, 3] and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.
- Published
- 2020
41. A low noise and low power cryogenic amplifier for single photoelectron sensitivity with large arrays of SiPMs
- Author
-
Carniti, P, Falcone, A, Gotti, C, Lucchini, A, Pessina, G, Riboldi, S, Terranova, F, Carniti, P., Falcone, A., Gotti, C., Lucchini, A., Pessina, G., Riboldi, S., Terranova, F., Carniti, P, Falcone, A, Gotti, C, Lucchini, A, Pessina, G, Riboldi, S, Terranova, F, Carniti, P., Falcone, A., Gotti, C., Lucchini, A., Pessina, G., Riboldi, S., and Terranova, F.
- Abstract
This paper presents a low noise amplifier for large arrays of silicon photomultipliers (SiPMs) operated in cryogenic environments, especially liquid argon (87 K) and liquid nitrogen (77 K) . The goal is for one amplifier to read out a total photosensitive surface of tens of cm2 while retaining the capability to resolve single photoelectron signals. Due to the large capacitance of SiPMs, typically a few nF per cm2, the main contributor to noise is the series (voltage) component. A silicon-germanium heterojunction bipolar transistor (HBT) was selected as the input device of the cryogenic amplifier, followed by a fully differential operational amplifier, operated in an unconventional feedback configuration. The input referred voltage noise of the circuit at 77 K is just below 0.4 nV/Hz white (above 100 kHz) and 1 nV/Hz at 10 kHz. The value of the base spreading resistance of the HBT at 77 K was determined from noise measurements at different bias currents. Power consumption of the full circuit is about 2.5 mW . The design gives the flexibility to optimally compensate the feedback loop for different values of the input capacitance, and obtain a gain-bandwidth product in the GHz range. The signal-to-noise ratio obtained in reading out SiPMs is discussed for the case of a 300 kHz low pass filter and compared with the upper limit that would derive from applying optimum filtering algorithms.
- Published
- 2020
42. Beam test performance of prototype silicon detectors for the Outer Tracker for the Phase-2 Upgrade of CMS
- Author
-
Federal Ministry of Science, Research and Economy (Austria), Austrian Research Promotion Agency, Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), Flemish Department of Economy, Science and Innovation (Belgium), Centre National de la Recherche Scientifique (France), Croatian Science Foundation, Ministry of Science, Education and Sports of the Republic of Croatia, Academy of Finland, Ministry of Education and Culture (Finland), German Research Foundation, Higher Education and Research (Germany), Federal Ministry of Science, Research and Economy (Germany), Greek Government, Hungarian Academy of Sciences, Department of Science and Technology (India), Iranian Government, Istituto Nazionale di Fisica Nucleare, Pakistan Atomic Energy Commission, Swiss Agency for Development and Cooperation, European Commission, Adam, W., Currás, Esteban, Duarte Campderros, J., Fernández-García, Marcos, Gómez, Gervasio, González Sánchez, J., Jaramillo, R., Moya, David, Silva Jimenez, E., Vila, Iván, López Virto, A., CMS Collaboration, Federal Ministry of Science, Research and Economy (Austria), Austrian Research Promotion Agency, Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), Flemish Department of Economy, Science and Innovation (Belgium), Centre National de la Recherche Scientifique (France), Croatian Science Foundation, Ministry of Science, Education and Sports of the Republic of Croatia, Academy of Finland, Ministry of Education and Culture (Finland), German Research Foundation, Higher Education and Research (Germany), Federal Ministry of Science, Research and Economy (Germany), Greek Government, Hungarian Academy of Sciences, Department of Science and Technology (India), Iranian Government, Istituto Nazionale di Fisica Nucleare, Pakistan Atomic Energy Commission, Swiss Agency for Development and Cooperation, European Commission, Adam, W., Currás, Esteban, Duarte Campderros, J., Fernández-García, Marcos, Gómez, Gervasio, González Sánchez, J., Jaramillo, R., Moya, David, Silva Jimenez, E., Vila, Iván, López Virto, A., and CMS Collaboration
- Abstract
A new CMS tracker detector will be installed for operation at the High Luminosity LHC (HL-LHC). This detector comprises modules with two closely spaced parallel sensor plates and front-end ASICs capable of transmitting tracking information to the CMS Level-1 (L1) trigger at the 40 MHz beam crossing rate. The inclusion of tracking information in the L1 trigger decision will be essential for selecting events of interest efficiently at the HL-LHC. The CMS Binary Chip (CBC) has been designed to read out and correlate hits from pairs of tracker sensors, forming so-called track stubs. For the first time, a prototype irradiated module and a full-sized module, both equipped with the version 2 of the CBC, have been operated in test beam facilities. The efficiency of the stub finding logic of the modules for various angles of incidence has been studied. The ability of the modules to reject tracks with transverse momentum less than 2 GeV has been demonstrated. For modules built with irradiated sensors, no significant drop in the stub finding performance has been observed. Results from the beam tests are described in this paper.
- Published
- 2020
43. The SuperFGD Prototype charged particle beam tests
- Author
-
Blondel, A., Bogomilov, M., Bordoni, S., Cadoux, F., Douqa, D., Dugas, K., Ekelöf, Tord, Favre, Y., Fedotov, S., Fransson, Kjell, Fujita, R., Gramstad, E., Ichikawa, A. K., Ilieva, S., Iwamoto, K., Jesus-Valls, C., Jung, C. K., Kasetti, S. P., Khabibullin, M., Khotjantsev, A., Korzenev, A., Kostin, A., Kudenko, Y., Kutter, T., Lux, T., Maret, L., Matsubara, T., Mefodiev, A., Minamino, A., Mineev, O., Mitev, G., Nessi, M., Nicola, L., Noah, E., Parsa, S., Petkov, G., Sanchez, F., Sgalaberna, D., Shorrock, W., Skwarczynski, K., Suvorov, S., Teklu, A., Tsenov, R., Uchida, Y., Vankova-Kirilova, G., Yershov, N., Yokoyama, M., Zalipska, J., Ye, Zou, Zurek, W., Blondel, A., Bogomilov, M., Bordoni, S., Cadoux, F., Douqa, D., Dugas, K., Ekelöf, Tord, Favre, Y., Fedotov, S., Fransson, Kjell, Fujita, R., Gramstad, E., Ichikawa, A. K., Ilieva, S., Iwamoto, K., Jesus-Valls, C., Jung, C. K., Kasetti, S. P., Khabibullin, M., Khotjantsev, A., Korzenev, A., Kostin, A., Kudenko, Y., Kutter, T., Lux, T., Maret, L., Matsubara, T., Mefodiev, A., Minamino, A., Mineev, O., Mitev, G., Nessi, M., Nicola, L., Noah, E., Parsa, S., Petkov, G., Sanchez, F., Sgalaberna, D., Shorrock, W., Skwarczynski, K., Suvorov, S., Teklu, A., Tsenov, R., Uchida, Y., Vankova-Kirilova, G., Yershov, N., Yokoyama, M., Zalipska, J., Ye, Zou, and Zurek, W.
- Abstract
A novel scintillator detector, the SuperFGD, has been selected as the main neutrino target for an upgrade of the T2K experiment ND280 near detector. The detector design will allow nearly 47r coverage for neutrino interactions at the near detector and will provide lower energy thresholds, significantly reducing systematic errors for the experiment. The SuperFGD is made of optically-isolated scintillator cubes of size 10 x 10 x 10 mm(3), providing the required spatial and energy resolution to reduce systematic uncertainties for future T2K runs. The SuperFGD for T2K will have close to two million cubes in a 1920 x 560 x 1840 mm(3) volume. A prototype made of 24 x 8 x 48 cubes was tested at a charged particle beamline at the CERN PS facility. The SuperFGD Prototype was instrumented with readout electronics similar to the future implementation for T2K. Results on electronics and detector response are reported in this paper, along with a discussion of the 3D reconstruction capabilities of this type of detector. Several physics analyses with the prototype data are also discussed, including a study of stopping protons.
- Published
- 2020
- Full Text
- View/download PDF
44. The ABC130 barrel module prototyping programme for the ATLAS strip tracker
- Author
-
Poley, L., Sawyer, C., Addepalli, S., Affolder, A. A., Allongue, B., Allport, P., Anderssen, E., Anghinolfi, F., Arguin, J-F, Arling, J-H, Arnaez, O., Asbah, N. A., Ashby, J., Asimakopoulou, Eleni M., Atlay, N. B., Bartsch, L., Basso, M. J., Beacham, J., Beaupre, S. L., Beck, G., Beichert, C., Bergsten, L., Bernabeu, J., Bhattarai, P., Bloch, I, Blue, A. J., Bochenek, M., Botte, J., Boynton, L., Brenner, Richard, Brueers, B., Buchanan, E., Bullard, B., Capocasa, F., Carr, I, Carra, S., Chao, C. W., Chen, J., Chen, L., Chen, Y., Chen, X., Cindro, V, Ciocio, A., Civera, J. , V, Cormier, K., Cornell, E., Crick, B., Dabrowski, W., Dam, M., David, C., Demontigny, G., Dette, K., DeWitt, J., Diez, S., Doherty, F., Dopke, J., Dressnandt, N., Edwards, S., Fadeyev, V, Farrington, S., Fawcett, W., Fernandez-Tejero, J., Filmer, E., Fleta, C., Gallop, B., Galloway, Z., Argos, C. Garcia, Garg, D., Gignac, M., Gillberg, D., Giovinazzo, D., Glover, J., Goettlicher, P., Gonella, L., Gorisek, A., Grant, C., Grant, F., Gray, C., Greenall, A., Gregor, I, Greig, G., Grillo, A. A., Gu, S., Guescini, F., da Costa, J. Barreiro Guimaraes, Gunnell, J., Gupta, R., Haber, C., Halgheri, A., Hamersly, D., Haugen, T. E., Hauser, M., Heim, S., Heim, T., Helling, C., Herde, H., Hessey, N. P., Hommels, B., Hoenig, J. C., Hunter, A., Jackson, P., Jewkes, K., John, J. J., Johnson, T. A., Jones, T., Kachiguin, S., Kang, N., Kaplon, J., Kareem, M., Keener, P., Keller, J., Key-Charriere, M., Kilani, S., Kisliuk, D., Klein, C. T., Koffas, T., Kramberger, G., Krizka, K., Kroll, J., Kuehn, S., Kurth, M., Labitan, C., Lacasta, C., Lacker, H., Leon, P., Li, B., Li, C., Li, Y., Li, Z., Liang, Z., Liberatore, M., Lister, A., Liu, K., Liu, P., Lohse, T., Loenker, J., Lou, X., Lu, W., Luce, Z., Lynn, D., MacFadyen, R., Maegdefessel, S., Mahboubi, K., Malik, U., Mandic, I, La Marra, D., Martin, J., Martinez-Mckinney, F., Mikestikova, M., Mikuz, M., Mitra, A., Mladina, E., Montalbano, A., Monzat, D., Morii, M., Mullier, G., Neundorf, J., Newcomer, M., Ng, Y., Nikolica, A., Nikolopoulos, K., Oechsle, J., Oliver, J., Orr, R. S., Ottino, G., Paillard, C., Pani, P., Paowell, S., Parzefall, U., Phillips, P. W., Platero, A., Platero, V, Prahl, V, Pyatt, S., Ran, K., Reardon, N., Rehnisch, L., Renardi, A., Renzmann, M., Rifki, O., Rodriguez, A. Rodriguez, Rosin, G., Rossi, E., Ruggeri, T., Ruehr, F., Rymaszewski, P., Sadrozinski, H. F-W, Sanethavong, P., Santpur, S. Neha, Scharf, C., Schillaci, Z., Schmitt, S., Sharma, A., Sciolla, G., Seiden, A., Shi, X., Simpson-Allsop, C., Snoek, H., Snow, S., Solaz, C., Soldevila, U., Sousa, F., Sperlich, D., Staats, E., Stack, T. L., Stanitzki, M., Starinsky, N., Steentoft, Jonas, Stegler, M., Stelzer, B., Stucci, S., Swientek, K., Taylor, G. N., Taylor, W., Teoh, J. Jian, Teuscher, R., Thomas, J., Tigchelaar, A., Tran, T., Tricoli, A., Trischuk, D. A., Unno, Y., van Nieuwenhuizen, G., Ullan, M., Vermeulen, J., Leitao, P. Vicente, Vickey, T., Vidal, G., Vreeswijk, M., Warren, M., Weidberg, T., Wiehe, M., Wiglesworth, C., Wiik-Fuchs, L., Williams, S., Wilson, J., Witharm, R., Wizemann, F., Wonsak, S., Worm, S., Wormald, M., Xella, S., Yang, Y., Yarwick, J., Yu, T., Zhang, D., Zhang, K., Zhou, M., Zhu, H., Poley, L., Sawyer, C., Addepalli, S., Affolder, A. A., Allongue, B., Allport, P., Anderssen, E., Anghinolfi, F., Arguin, J-F, Arling, J-H, Arnaez, O., Asbah, N. A., Ashby, J., Asimakopoulou, Eleni M., Atlay, N. B., Bartsch, L., Basso, M. J., Beacham, J., Beaupre, S. L., Beck, G., Beichert, C., Bergsten, L., Bernabeu, J., Bhattarai, P., Bloch, I, Blue, A. J., Bochenek, M., Botte, J., Boynton, L., Brenner, Richard, Brueers, B., Buchanan, E., Bullard, B., Capocasa, F., Carr, I, Carra, S., Chao, C. W., Chen, J., Chen, L., Chen, Y., Chen, X., Cindro, V, Ciocio, A., Civera, J. , V, Cormier, K., Cornell, E., Crick, B., Dabrowski, W., Dam, M., David, C., Demontigny, G., Dette, K., DeWitt, J., Diez, S., Doherty, F., Dopke, J., Dressnandt, N., Edwards, S., Fadeyev, V, Farrington, S., Fawcett, W., Fernandez-Tejero, J., Filmer, E., Fleta, C., Gallop, B., Galloway, Z., Argos, C. Garcia, Garg, D., Gignac, M., Gillberg, D., Giovinazzo, D., Glover, J., Goettlicher, P., Gonella, L., Gorisek, A., Grant, C., Grant, F., Gray, C., Greenall, A., Gregor, I, Greig, G., Grillo, A. A., Gu, S., Guescini, F., da Costa, J. Barreiro Guimaraes, Gunnell, J., Gupta, R., Haber, C., Halgheri, A., Hamersly, D., Haugen, T. E., Hauser, M., Heim, S., Heim, T., Helling, C., Herde, H., Hessey, N. P., Hommels, B., Hoenig, J. C., Hunter, A., Jackson, P., Jewkes, K., John, J. J., Johnson, T. A., Jones, T., Kachiguin, S., Kang, N., Kaplon, J., Kareem, M., Keener, P., Keller, J., Key-Charriere, M., Kilani, S., Kisliuk, D., Klein, C. T., Koffas, T., Kramberger, G., Krizka, K., Kroll, J., Kuehn, S., Kurth, M., Labitan, C., Lacasta, C., Lacker, H., Leon, P., Li, B., Li, C., Li, Y., Li, Z., Liang, Z., Liberatore, M., Lister, A., Liu, K., Liu, P., Lohse, T., Loenker, J., Lou, X., Lu, W., Luce, Z., Lynn, D., MacFadyen, R., Maegdefessel, S., Mahboubi, K., Malik, U., Mandic, I, La Marra, D., Martin, J., Martinez-Mckinney, F., Mikestikova, M., Mikuz, M., Mitra, A., Mladina, E., Montalbano, A., Monzat, D., Morii, M., Mullier, G., Neundorf, J., Newcomer, M., Ng, Y., Nikolica, A., Nikolopoulos, K., Oechsle, J., Oliver, J., Orr, R. S., Ottino, G., Paillard, C., Pani, P., Paowell, S., Parzefall, U., Phillips, P. W., Platero, A., Platero, V, Prahl, V, Pyatt, S., Ran, K., Reardon, N., Rehnisch, L., Renardi, A., Renzmann, M., Rifki, O., Rodriguez, A. Rodriguez, Rosin, G., Rossi, E., Ruggeri, T., Ruehr, F., Rymaszewski, P., Sadrozinski, H. F-W, Sanethavong, P., Santpur, S. Neha, Scharf, C., Schillaci, Z., Schmitt, S., Sharma, A., Sciolla, G., Seiden, A., Shi, X., Simpson-Allsop, C., Snoek, H., Snow, S., Solaz, C., Soldevila, U., Sousa, F., Sperlich, D., Staats, E., Stack, T. L., Stanitzki, M., Starinsky, N., Steentoft, Jonas, Stegler, M., Stelzer, B., Stucci, S., Swientek, K., Taylor, G. N., Taylor, W., Teoh, J. Jian, Teuscher, R., Thomas, J., Tigchelaar, A., Tran, T., Tricoli, A., Trischuk, D. A., Unno, Y., van Nieuwenhuizen, G., Ullan, M., Vermeulen, J., Leitao, P. Vicente, Vickey, T., Vidal, G., Vreeswijk, M., Warren, M., Weidberg, T., Wiehe, M., Wiglesworth, C., Wiik-Fuchs, L., Williams, S., Wilson, J., Witharm, R., Wizemann, F., Wonsak, S., Worm, S., Wormald, M., Xella, S., Yang, Y., Yarwick, J., Yu, T., Zhang, D., Zhang, K., Zhou, M., and Zhu, H.
- Abstract
For the Phase-II Upgrade of the ATLAS Detector [1], its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100% silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-250) [2, 3] and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.
- Published
- 2020
- Full Text
- View/download PDF
45. The ABC130 barrel module prototyping programme for the ATLAS strip tracker
- Author
-
Poley, L., Sawyer, C., Addepalli, S., Affolder, A. A., Allongue, B., Allport, P., Anderssen, E., Anghinolfi, F., Arguin, J-F, Arling, J-H, Arnaez, O., Asbah, N. A., Ashby, J., Asimakopoulou, E. M., Atlay, N. B., Bartsch, L., Basso, M. J., Beacham, J., Beaupre, S. L., Beck, G., Beichert, C., Bergsten, L., Bernabeu, J., Bhattarai, P., Bloch, Thomsen, Blue, A. J., Bochenek, M., Botte, J., Boynton, L., Brenner, R., Brueers, B., Buchanan, E., Bullard, B., Capocasa, F., Carr, Antony M., Carra, S., Chao, C. W., Chen, J., Chen, L., Chen, Y., Chen, X., Cindro, Ciocio, A., Civera, J., Cormier, K., Cornell, E., Crick, B., Dabrowski, W., Dam, M., David, C., Demontigny, G., Dette, K., DeWitt, J., Diez, S., Doherty, F., Dopke, J., Dressnandt, N., Edwards, S., Fadeyev, Farrington, S., Fawcett, W., Fernandez-Tejero, J., Filmer, E., Fleta, C., Gallop, B., Galloway, Z., Argos, C. Garcia, Garg, D., Gignac, M., Gillberg, D., Giovinazzo, D., Glover, J., Goettlicher, P., Gonella, L., Gorisek, A., Grant, C., Grant, F., Gray, C., Greenall, A., Gregor, Ivan, Greig, G., Grillo, A. A., Gu, S., Guescini, F., da Costa, J. Barreiro Guimaraes, Gunnell, J., Gupta, R., Haber, C., Halgheri, A., Hamersly, D., Haugen, T. E., Hauser, M., Heim, S., Heim, T., Helling, C., Herde, H., Hessey, N. P., Hommels, B., Hoenig, J. C., Hunter, A., Jackson, P., Jewkes, K., John, J. J., Johnson, T. A., Jones, T., Kachiguin, S., Kang, N., Kaplon, J., Kareem, M., Keener, P., Keller, J., Key-Charriere, M., Kilani, S., Kisliuk, D., Klein, C. T., Koffas, T., Kramberger, G., Krizka, K., Kroll, J., Kuehn, S., Kurth, M., Labitan, C., Lacasta, C., Lacker, H., Leon, P., Li, B., Li, C., Li, Y., Li, Z., Liang, Z., Liberatore, M., Lister, A., Liu, K., Liu, P., Lohse, T., Loenker, J., Lou, X., Lu, W., Luce, Z., Lynn, D., MacFadyen, R., Maegdefessel, S., Mahboubi, K., Malik, U., Mandic, V., La Marra, D., Martin, J., Martinez-Mckinney, F., Mikestikova, M., Mikuz, M., Mitra, A., Mladina, E., Montalbano, A., Monzat, D., Morii, M., Mullier, G., Neundorf, J., Newcomer, M., Ng, Y., Nikolica, A., Nikolopoulos, K., Oechsle, J., Oliver, J., Orr, R. S., Ottino, G., Paillard, C., Pani, P., Paowell, S., Parzefall, U., Phillips, P. W., Platero, A., Platero, Gloria, Prahl, Julie, Pyatt, S., Ran, K., Reardon, N., Rehnisch, L., Renardi, A., Renzmann, M., Rifki, O., Rodriguez, A. Rodriguez, Rosin, G., Rossi, E., Ruggeri, T., Ruehr, F., Rymaszewski, P., Sadrozinski, H. F-W, Sanethavong, P., Santpur, S. Neha, Scharf, C., Schillaci, Z., Schmitt, S., Sharma, A., Sciolla, G., Seiden, A., Shi, X., Simpson-Allsop, C., Snoek, H., Snow, S., Solaz, C., Soldevila, U., Sousa, F., Sperlich, D., Staats, E., Stack, T. L., Stanitzki, M., Starinsky, N., Steentoft, J., Stegler, M., Stelzer, B., Stucci, S., Swientek, K., Taylor, G. N., Taylor, W., Teoh, J. Jian, Teuscher, R., Thomas, J., Tigchelaar, A., Tran, T., Tricoli, A., Trischuk, D. A., Unno, Y., van Nieuwenhuizen, G., Ullan, M., Vermeulen, J., Leitao, P. Vicente, Vickey, T., Vidal, G., Vreeswijk, M., Warren, M., Weidberg, T., Wiehe, M., Wiglesworth, C., Wiik-Fuchs, L., Williams, S., Wilson, J., Witharm, R., Wizemann, F., Wonsak, S., Worm, S., Wormald, M., Xella, S., Yang, Y., Yarwick, J., Yu, T., Zhang, D., Zhang, K., Zhou, M., Zhu, H., Poley, L., Sawyer, C., Addepalli, S., Affolder, A. A., Allongue, B., Allport, P., Anderssen, E., Anghinolfi, F., Arguin, J-F, Arling, J-H, Arnaez, O., Asbah, N. A., Ashby, J., Asimakopoulou, E. M., Atlay, N. B., Bartsch, L., Basso, M. J., Beacham, J., Beaupre, S. L., Beck, G., Beichert, C., Bergsten, L., Bernabeu, J., Bhattarai, P., Bloch, Thomsen, Blue, A. J., Bochenek, M., Botte, J., Boynton, L., Brenner, R., Brueers, B., Buchanan, E., Bullard, B., Capocasa, F., Carr, Antony M., Carra, S., Chao, C. W., Chen, J., Chen, L., Chen, Y., Chen, X., Cindro, Ciocio, A., Civera, J., Cormier, K., Cornell, E., Crick, B., Dabrowski, W., Dam, M., David, C., Demontigny, G., Dette, K., DeWitt, J., Diez, S., Doherty, F., Dopke, J., Dressnandt, N., Edwards, S., Fadeyev, Farrington, S., Fawcett, W., Fernandez-Tejero, J., Filmer, E., Fleta, C., Gallop, B., Galloway, Z., Argos, C. Garcia, Garg, D., Gignac, M., Gillberg, D., Giovinazzo, D., Glover, J., Goettlicher, P., Gonella, L., Gorisek, A., Grant, C., Grant, F., Gray, C., Greenall, A., Gregor, Ivan, Greig, G., Grillo, A. A., Gu, S., Guescini, F., da Costa, J. Barreiro Guimaraes, Gunnell, J., Gupta, R., Haber, C., Halgheri, A., Hamersly, D., Haugen, T. E., Hauser, M., Heim, S., Heim, T., Helling, C., Herde, H., Hessey, N. P., Hommels, B., Hoenig, J. C., Hunter, A., Jackson, P., Jewkes, K., John, J. J., Johnson, T. A., Jones, T., Kachiguin, S., Kang, N., Kaplon, J., Kareem, M., Keener, P., Keller, J., Key-Charriere, M., Kilani, S., Kisliuk, D., Klein, C. T., Koffas, T., Kramberger, G., Krizka, K., Kroll, J., Kuehn, S., Kurth, M., Labitan, C., Lacasta, C., Lacker, H., Leon, P., Li, B., Li, C., Li, Y., Li, Z., Liang, Z., Liberatore, M., Lister, A., Liu, K., Liu, P., Lohse, T., Loenker, J., Lou, X., Lu, W., Luce, Z., Lynn, D., MacFadyen, R., Maegdefessel, S., Mahboubi, K., Malik, U., Mandic, V., La Marra, D., Martin, J., Martinez-Mckinney, F., Mikestikova, M., Mikuz, M., Mitra, A., Mladina, E., Montalbano, A., Monzat, D., Morii, M., Mullier, G., Neundorf, J., Newcomer, M., Ng, Y., Nikolica, A., Nikolopoulos, K., Oechsle, J., Oliver, J., Orr, R. S., Ottino, G., Paillard, C., Pani, P., Paowell, S., Parzefall, U., Phillips, P. W., Platero, A., Platero, Gloria, Prahl, Julie, Pyatt, S., Ran, K., Reardon, N., Rehnisch, L., Renardi, A., Renzmann, M., Rifki, O., Rodriguez, A. Rodriguez, Rosin, G., Rossi, E., Ruggeri, T., Ruehr, F., Rymaszewski, P., Sadrozinski, H. F-W, Sanethavong, P., Santpur, S. Neha, Scharf, C., Schillaci, Z., Schmitt, S., Sharma, A., Sciolla, G., Seiden, A., Shi, X., Simpson-Allsop, C., Snoek, H., Snow, S., Solaz, C., Soldevila, U., Sousa, F., Sperlich, D., Staats, E., Stack, T. L., Stanitzki, M., Starinsky, N., Steentoft, J., Stegler, M., Stelzer, B., Stucci, S., Swientek, K., Taylor, G. N., Taylor, W., Teoh, J. Jian, Teuscher, R., Thomas, J., Tigchelaar, A., Tran, T., Tricoli, A., Trischuk, D. A., Unno, Y., van Nieuwenhuizen, G., Ullan, M., Vermeulen, J., Leitao, P. Vicente, Vickey, T., Vidal, G., Vreeswijk, M., Warren, M., Weidberg, T., Wiehe, M., Wiglesworth, C., Wiik-Fuchs, L., Williams, S., Wilson, J., Witharm, R., Wizemann, F., Wonsak, S., Worm, S., Wormald, M., Xella, S., Yang, Y., Yarwick, J., Yu, T., Zhang, D., Zhang, K., Zhou, M., and Zhu, H.
- Abstract
For the Phase-II Upgrade of the ATLAS Detector [1], its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100% silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-250) [2, 3] and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.
- Published
- 2020
46. A gigabit transceiver for the ATLAS inner tracker pixel detector readout upgrade
- Author
-
Chen, C., Wallängen, Veronica, Gong, D., Grace, C., Sun, Q., Guo, D., Huang, G., Kulis, S., Leroux, P., Liu, C., Liu, T., Moreira, P., Prinzie, J., Xiao, L., Ye, J., Chen, C., Wallängen, Veronica, Gong, D., Grace, C., Sun, Q., Guo, D., Huang, G., Kulis, S., Leroux, P., Liu, C., Liu, T., Moreira, P., Prinzie, J., Xiao, L., and Ye, J.
- Abstract
This paper presents the design and simulation results of a gigabit transceiver Application Specific Integrated Circuit (ASIC) called GBCR for the ATLAS Inner Tracker (ITk) Pixel detector readout upgrade. GBCR has four upstream receiver channels and a downstream transmitter channel. Each upstream channel operates at 5.12 Gbps, while the downstream channel operates at 2.56 Gbps. In each upstream channel, GBCR equalizes a signal received through a 5-meter 34-American Wire Gauge (AWG) twin-axial cable, retimes the data with a recovered clock, and drives an optical transmitter. In the downstream channel, GBCR receives the data from an optical receiver and drives the same type of cable as the upstream channels. The output jitter of an upstream channel is 26.5 ps and the jitter of the downstream channel after the cable is 33.5 ps. Each upstream channel consumes 78 mW and each downstream channel consumes 27 mW. Simulation results of the upstream test channel suggest that a significant jitter reduction could be achieved with minimally increased power consumption by using a Feed Forward Equalizer (FFE) + Decision Feedback Equalization (DFE) in addition to the linear equalization of the baseline channel. GBCR is designed in a 65-nm CMOS technology.
- Published
- 2019
- Full Text
- View/download PDF
47. The XENON1T data acquisition system
- Author
-
Aprile, E., Aalbers, Jelle, Agostini, F., Alfonsi, M., Althueser, L., Amaro, F. D., Antochi, Vasile Cristian, Arneodo, F., Barge, Derek, Baudis, L., Bauermeister, Boris, Bellagamba, L., Benabderrahmane, M. L., Berger, T., Breur, P. A., Brown, A., Brown, E., Bruenner, S., Bruno, G., Budnik, R., Buetikofer, L., Capelli, C., Cardoso, J. M. R., Cichon, D., Coderre, D., Colijn, A. P., Conrad, Jan, Cussonneau, J. P., Decowski, M. P., de Perio, P., Di Gangi, P., Di Giovanni, A., Diglio, S., Elykov, A., Eurin, G., Fei, J., Ferella, Alfredo D., Fieguth, A., Fulgione, W., Gaemers, P., Rosso, A. Gallo, Galloway, M., Gao, F., Garbini, M., Grandi, L., Greene, Z., Hasterok, C., Hogenbirk, E., Howlett, J., Iacovacci, M., Itay, R., Joerg, F., Kazama, S., Kish, A., Kobayashi, M., Koltman, G., Kopec, A., Landsman, H., Lang, R. F., Levinson, L., Lin, Q., Lindemann, S., Lindner, M., Lombardi, F., Lopes, J. A. M., Fune, E. Lopez, Macolino, C., Mahlstedt, Jörn, Manfredini, A., Marignetti, F., Undagoitia, T. Marrodan, Masbou, J., Masson, D., Mastroianni, S., Messina, M., Micheneau, K., Miller, K., Molinario, A., Morå, Knut, Mosbacher, Y., Murra, M., Naganoma, J., Ni, K., Oberlack, U., Odgers, K., Pelssers, Bart, Peres, R., Piastra, F., Pienaar, J., Pizzella, V, Plante, G., Podviianiuk, R., Qiu, H., Garcia, D. Ramirez, Reichard, M. S., Riedel, B., Rocchetti, A., Rupp, N., dos Santos, J. M. F., Sartorelli, G., Sarcevic, N., Scheibelhut, M., Schindler, S., Schreiner, J., Schulte, D., Schumann, M., Lavina, L. Scotto, Selvi, M., Shagin, P., Shockley, E., Silva, M., Simgen, H., Therreau, C., Thers, D., Toschi, F., Trinchero, G., Tunnell, C. D., Upole, N., Vargas, M., Volta, G., Wack, O., Wang, H., Wei, Y., Weinheimer, C., Wenz, D., Wittweg, C., Wulf, J., Ye, J., Zhang, Y., Zhu, T., Zopounidis, J. P., Pieracci, M., Tintori, C., Aprile, E., Aalbers, Jelle, Agostini, F., Alfonsi, M., Althueser, L., Amaro, F. D., Antochi, Vasile Cristian, Arneodo, F., Barge, Derek, Baudis, L., Bauermeister, Boris, Bellagamba, L., Benabderrahmane, M. L., Berger, T., Breur, P. A., Brown, A., Brown, E., Bruenner, S., Bruno, G., Budnik, R., Buetikofer, L., Capelli, C., Cardoso, J. M. R., Cichon, D., Coderre, D., Colijn, A. P., Conrad, Jan, Cussonneau, J. P., Decowski, M. P., de Perio, P., Di Gangi, P., Di Giovanni, A., Diglio, S., Elykov, A., Eurin, G., Fei, J., Ferella, Alfredo D., Fieguth, A., Fulgione, W., Gaemers, P., Rosso, A. Gallo, Galloway, M., Gao, F., Garbini, M., Grandi, L., Greene, Z., Hasterok, C., Hogenbirk, E., Howlett, J., Iacovacci, M., Itay, R., Joerg, F., Kazama, S., Kish, A., Kobayashi, M., Koltman, G., Kopec, A., Landsman, H., Lang, R. F., Levinson, L., Lin, Q., Lindemann, S., Lindner, M., Lombardi, F., Lopes, J. A. M., Fune, E. Lopez, Macolino, C., Mahlstedt, Jörn, Manfredini, A., Marignetti, F., Undagoitia, T. Marrodan, Masbou, J., Masson, D., Mastroianni, S., Messina, M., Micheneau, K., Miller, K., Molinario, A., Morå, Knut, Mosbacher, Y., Murra, M., Naganoma, J., Ni, K., Oberlack, U., Odgers, K., Pelssers, Bart, Peres, R., Piastra, F., Pienaar, J., Pizzella, V, Plante, G., Podviianiuk, R., Qiu, H., Garcia, D. Ramirez, Reichard, M. S., Riedel, B., Rocchetti, A., Rupp, N., dos Santos, J. M. F., Sartorelli, G., Sarcevic, N., Scheibelhut, M., Schindler, S., Schreiner, J., Schulte, D., Schumann, M., Lavina, L. Scotto, Selvi, M., Shagin, P., Shockley, E., Silva, M., Simgen, H., Therreau, C., Thers, D., Toschi, F., Trinchero, G., Tunnell, C. D., Upole, N., Vargas, M., Volta, G., Wack, O., Wang, H., Wei, Y., Weinheimer, C., Wenz, D., Wittweg, C., Wulf, J., Ye, J., Zhang, Y., Zhu, T., Zopounidis, J. P., Pieracci, M., and Tintori, C.
- Abstract
The XENON1T liquid xenon time projection chamber is the most sensitive detector built to date for the measurement of direct interactions of weakly interacting massive particles with normal matter. The data acquisition system (DAQ) is constructed from commercial, open source, and custom components to digitize signals from the detector and store them for later analysis. The system achieves an extremely low signal threshold by triggering each channel independently, achieving a single photoelectron acceptance of (93 +/- 3)%, and deferring the global trigger to a later, software stage. The event identification is based on MongoDB database queries and has over 98% efficiency at recognizing interactions at the analysis threshold in the center of the target. A readout bandwidth over 300 MB/s is reached in calibration modes and is further expandable via parallelization. This DAQ system was successfully used during three years of operation of XENON1T.
- Published
- 2019
- Full Text
- View/download PDF
48. A USB 3.0 readout system for Timepix3 detectors with on-board processing capabilities
- Author
-
Dreier, Till, Krapohl, David, Maneuski, Dzimitry, Lawal, Najeem, Schöwerling, Jan Oliver, O'Shea, Val, Fröjdh, Christer, Dreier, Till, Krapohl, David, Maneuski, Dzimitry, Lawal, Najeem, Schöwerling, Jan Oliver, O'Shea, Val, and Fröjdh, Christer
- Abstract
Timepix3 is a high-speed hybrid pixel detector consisting of a 256 x 256 pixel matrix with a maximum data rate of up to 5.12 Gbps (80 MHit/s). The ASIC is equipped with eight data channels that are data driven and zero suppressed making it suitable for particle tracking and spectral imaging. In this paper, we present a USB 3.0-based programmable readout system with online preprocessing capabilities. USB 3.0 is present on all modern computers and can, under real-world conditions, achieve around 320MB/s, which allows up to 40 MHit/s of raw pixel data. With on-line processing, the proposed readout system is capable of achieving higher transfer rate (approaching Timepix4) since only relevant information rather than raw data will be transmitted. The system is based on an Opal Kelly development board with a Spartan 6 FPGA providing a USB 3.0 interface between FPGA and PC via an FX3 chip. It connects to a CERN T imepix 3 chipboard with standard VHDCI connector via a custom designed mezzanine card. The firmware is structured into blocks such as detector interface, USB interface and system control and an interface for data pre-processing. On the PC side, a Qt/C++ multi-platformsoftware library is implemented to control the readout system, providing access to detector functions and handling high-speed USB 3.0 streaming of data from the detector. We demonstrate equalisation, calibration and data acquisition using a Cadmium Telluride sensor and optimise imaging data using simultaneous ToT (Time-over-Threshold) and ToA (Timeof- Arrival) information. The presented readout system is capable of other on-line processing such as analysis and classification of nuclear particles with current or larger FPGAs.
- Published
- 2018
- Full Text
- View/download PDF
49. A USB 3.0 readout system for Timepix3 detectors with on-board processing capabilities
- Author
-
Dreier, Till, Krapohl, David, Maneuski, Dzimitry, Lawal, Najeem, Schöwerling, Jan Oliver, O'Shea, Val, Fröjdh, Christer, Dreier, Till, Krapohl, David, Maneuski, Dzimitry, Lawal, Najeem, Schöwerling, Jan Oliver, O'Shea, Val, and Fröjdh, Christer
- Abstract
Timepix3 is a high-speed hybrid pixel detector consisting of a 256 x 256 pixel matrix with a maximum data rate of up to 5.12 Gbps (80 MHit/s). The ASIC is equipped with eight data channels that are data driven and zero suppressed making it suitable for particle tracking and spectral imaging. In this paper, we present a USB 3.0-based programmable readout system with online preprocessing capabilities. USB 3.0 is present on all modern computers and can, under real-world conditions, achieve around 320MB/s, which allows up to 40 MHit/s of raw pixel data. With on-line processing, the proposed readout system is capable of achieving higher transfer rate (approaching Timepix4) since only relevant information rather than raw data will be transmitted. The system is based on an Opal Kelly development board with a Spartan 6 FPGA providing a USB 3.0 interface between FPGA and PC via an FX3 chip. It connects to a CERN T imepix 3 chipboard with standard VHDCI connector via a custom designed mezzanine card. The firmware is structured into blocks such as detector interface, USB interface and system control and an interface for data pre-processing. On the PC side, a Qt/C++ multi-platformsoftware library is implemented to control the readout system, providing access to detector functions and handling high-speed USB 3.0 streaming of data from the detector. We demonstrate equalisation, calibration and data acquisition using a Cadmium Telluride sensor and optimise imaging data using simultaneous ToT (Time-over-Threshold) and ToA (Timeof- Arrival) information. The presented readout system is capable of other on-line processing such as analysis and classification of nuclear particles with current or larger FPGAs.
- Published
- 2018
- Full Text
- View/download PDF
50. Development of slew-rate-limited time-over-threshold (ToT) ASIC for a multi-channel silicon-based ion detector
- Author
-
Uenomachi, Mizuki, Orita, Tadashi, Shimazoe, Kenji, Takahashi, Hiroyuki, Ikeda, Hirokazu, Tsujita, Koki, Sekiba, Daiichiro, 織田, 忠, 島添, 健次, 高橋, 浩之, 池田, 博一, 辻田, 耕希, 関場, 大一郎, Uenomachi, Mizuki, Orita, Tadashi, Shimazoe, Kenji, Takahashi, Hiroyuki, Ikeda, Hirokazu, Tsujita, Koki, Sekiba, Daiichiro, 織田, 忠, 島添, 健次, 高橋, 浩之, 池田, 博一, 辻田, 耕希, and 関場, 大一郎
- Abstract
Accepted: 2018-01-03
- Published
- 2018
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.