Les réseaux de neurones sont une famille de modèles de l'apprentissage automatique qui sont capable d'apprendre des tâches complexes directement des données. Bien que produisant déjà des résultats impressionnants dans beaucoup de domaines tels que la reconnaissance de la parole, la vision par ordinateur ou encore la traduction automatique, il y a encore de nombreux défis dans l'entraînement et dans le déploiement des réseaux de neurones. En particulier, entraîner des réseaux de neurones nécessite typiquement d'énormes ressources computationnelles, et les modèles entraînés sont souvent trop gros ou trop gourmands en ressources pour être déployés sur des appareils dont les ressources sont limitées, tels que les téléphones intelligents ou les puces de faible puissance. Les articles présentés dans cette thèse étudient des solutions à ces différents problèmes. Les deux premiers articles se concentrent sur l'amélioration de l'entraînement des réseaux de neurones récurrents (RNNs), un type de réseaux de neurones particulier conçu pour traiter des données séquentielles. Les RNNs sont notoirement difficiles à entraîner, donc nous proposons d'améliorer leur paramétrisation en y intégrant la normalisation par lots (BN), qui était jusqu'à lors uniquement appliquée aux réseaux non-récurrents. Dans le premier article, nous appliquons BN aux connections des entrées vers les couches cachées du RNN, ce qui réduit le décalage covariable entre les différentes couches; et dans le second article, nous montrons comment appliquer BN aux connections des entrées vers les couches cachées et aussi des couches cachée vers les couches cachée des réseau récurrents à mémoire court et long terme (LSTM), une architecture populaire de RNN, ce qui réduit également le décalage covariable entre les pas de temps. Nos expériences montrent que les paramétrisations proposées permettent d'entraîner plus rapidement et plus efficacement les RNNs, et ce sur différents bancs de tests. Dans le troisième article, nous proposons un nouvel optimiseur pour accélérer l'entraînement des réseaux de neurones. Les optimiseurs diagonaux traditionnels, tels que RMSProp, opèrent dans l'espace des paramètres, ce qui n'est pas optimal lorsque plusieurs paramètres sont mis à jour en même temps. A la place, nous proposons d'appliquer de tels optimiseurs dans une base dans laquelle l'approximation diagonale est susceptible d'être plus efficace. Nous tirons parti de l'approximation K-FAC pour construire efficacement cette base propre Kronecker-factorisée (KFE). Nos expériences montrent une amélioration en vitesse d'entraînement par rapport à K-FAC, et ce pour différentes architectures de réseaux de neurones profonds. Le dernier article se concentre sur la taille des réseaux de neurones, i.e. l'action d'enlever des paramètres du réseau, afin de réduire son empreinte mémoire et son coût computationnel. Les méthodes de taille typique se base sur une approximation de Taylor de premier ou de second ordre de la fonction de coût, afin d'identifier quels paramètres peuvent être supprimés. Nous proposons d'étudier l'impact des hypothèses qui se cachent derrière ces approximations. Aussi, nous comparons systématiquement les méthodes basées sur des approximations de premier et de second ordre avec la taille par magnitude (MP), et montrons comment elles fonctionnent à la fois avant, mais aussi après une phase de réapprentissage. Nos expériences montrent que mieux préserver la fonction de coût ne transfère pas forcément à des réseaux qui performent mieux après la phase de réapprentissage, ce qui suggère que considérer uniquement l'impact de la taille sur la fonction de coût ne semble pas être un objectif suffisant pour développer des bon critères de taille., Neural networks are a family of Machine Learning models able to learn complex tasks directly from the data. Although already producing impressive results in many areas such as speech recognition, computer vision or machine translation, there are still a lot of challenges in both training and deployment of neural networks. In particular, training neural networks typically requires huge amounts of computational resources, and trained models are often too big or too computationally expensive to be deployed on resource-limited devices, such as smartphones or low-power chips. The articles presented in this thesis investigate solutions to these different issues. The first couple of articles focus on improving the training of Recurrent Neural Networks (RNNs), networks specially designed to process sequential data. RNNs are notoriously hard to train, so we propose to improve their parameterisation by upgrading them with Batch Normalisation (BN), a very effective parameterisation which was hitherto used only in feed-forward networks. In the first article, we apply BN to the input-to-hidden connections of the RNNs, thereby reducing internal covariate shift between layers. In the second article, we show how to apply it to both input-to-hidden and hidden-to-hidden connections of the Long Short-Term Memory (LSTM), a popular RNN architecture, thus also reducing internal covariate shift between time steps. Our experiments show that these proposed parameterisations allow for faster and better training of RNNs on several benchmarks. In the third article, we propose a new optimiser to accelerate the training of neural networks. Traditional diagonal optimisers, such as RMSProp, operate in parameters coordinates, which is not optimal when several parameters are updated at the same time. Instead, we propose to apply such optimisers in a basis in which the diagonal approximation is likely to be more effective. We leverage the same approximation used in Kronecker-factored Approximate Curvature (K-FAC) to efficiently build this Kronecker-factored Eigenbasis (KFE). Our experiments show improvements over K-FAC in training speed for several deep network architectures. The last article focuses on network pruning, the action of removing parameters from the network, in order to reduce its memory footprint and computational cost. Typical pruning methods rely on first or second order Taylor approximations of the loss landscape to identify which parameters can be discarded. We propose to study the impact of the assumptions behind such approximations. Moreover, we systematically compare methods based on first and second order approximations with Magnitude Pruning (MP), showing how they perform both before and after a fine-tuning phase. Our experiments show that better preserving the original network function does not necessarily transfer to better performing networks after fine-tuning, suggesting that only considering the impact of pruning on the loss might not be a sufficient objective to design good pruning criteria.