Eine spezifische Immuntherapie der Allergie, wie sie für die Pollen- und Bienengiftallergie angewandt wird, ist für Nahrungsmittelallergien wegen des hohen Risikos lebensbedrohlicher Nebenwirkungen und fehlender Wirksamkeit nicht etabliert. Somit bleibt vielen Nahrungsmittelallergikern nur die Vermeidung der allergieauslösenden Lebensmittel zur Prävention allergischer Reaktionen. Neuartige Ansätze zur Immuntherapie von Allergien beschreiben unter anderem die Verwendung sogenannter hypoallergener Proteine. Diese sind meist Allergene, deren Struktur dahingehend verändert wurde, dass sie trotz intakter Immunogenität eine reduzierte IgE-Bindungseigenschaft und damit eine verminderte Allergenität aufweisen. Studien am Hauptallergen der Birke haben gezeigt, dass sowohl die Mutation von IgE relevanten Epitopen, als auch Multimerisierungen der Birkenpollenallergene zu solchen Hypoallergenen führen. Mit dieser Arbeit sollte untersucht werden, inwieweit sich solche gezielten Mutationen und Oligomerisierungen auf die Hauptallergene von Sellerie und Karotte übertragen lassen. Ein weiterer Punkt der Studie lag darin, zu untersuchen, ob Oligomerisierung allein oder in Kombination mit Mutationen einen größeren Einfluss auf die immunogenen Eigenschaften bewirkt. Wichtig für die Konzeption hypoallergener Proteine ist das Wissen, um wichtige IgE bindende Epitope auf Allergenen. Für das Hauptallergen aus Birke (Bet v 1) ist die exponierte P-Loop-Region als wichtiges Epitop beschrieben. Die Sellerieallergie ist in Mitteleuropa oft auf eine IgE-Kreuzreaktivität mit Bet v 1 zurückzuführen, weshalb auch das Hauptallergen aus Sellerie (Api g 1), von welchem zwei Isoformen beschrieben sind, näher im Bereich der P-Loop-Region untersucht wurde. Die in dieser Arbeit als stärker IgE bindende bestätigte Isoform Api g 1.01 zeigt allerdings genau in dieser Region eine wichtige Abweichung von Bet v 1, weshalb eine Mutante hergestellt wurde, welche in diesem Bereich dem Bet v 1 angepasst wurde. Mit Hilfe von IgE-Bindungsstudien konnte gezeigt werden, dass diese Veränderung zu einer Verstärkung der Bindung von IgE aus Seren von Birkenpollenallergikern führte, während Seren von Sellerieallergikern, die ausschließlich auf die Isoform Api g 1.01 sensibilisiert waren, eher eine unveränderte IgE-Bindung an diese Mutante zeigten. Seren von Patienten, die auf beide Isoformen sensibilisiert waren, zeigten wie die Birkenpollenallergiker eine erhöhte Reaktivität auf diese Mutante. Da die zweite Isoform, Api g 1.02, allerdings nur eine geringe Relevanz bei der Sellerieallergie spielt, kann durch die Ergebnisse mit dieser Mutante gefolgert werden, dass die P-Loop-Region für die birkenpollenassoziierte Sellerieallergie ein weniger wichtiges IgE-Epitop ist, als für das homologe Birkenpollenallergen. Die gerichtete Mutation der P-Loop-Region kann somit bei Api g 1.01 nicht als Strategie zur Herstellung hypoallergener Derivate in Betracht gezogen werden. Weiterführende Studien bezüglich der relevanten IgE-Epitope des Hauptallergens aus Sellerie sind demnach nötig. Ein weiterer wichtiger Ansatz zur Herstellung hypoallergener Mutanten ist die Zerstörung der dreidimensionalen Struktur von allergenen Proteinen, so dass keine Konformationsepitope mehr vorhanden sind, welche hauptsächlich für die IgE-Bindung verantwortlich sind. In der Regel sind solche Proteine nicht mehr in der Lage IgE im Patientenserum zu binden, können aber in vivo eine zelluläre Immunogenität auslösen. Dazu wurden neben den jeweiligen Isoformen der Hauptallergene von Sellerie (Api g 1) und Karotte (Dau c 1) auch 111P-Mutanten dieser Proteine rekombinant hergestellt, welche eine zerstörte Sekundärstruktur aufwiesen. Sowohl für Sellerie als auch für Karotte, waren die mutierten Proteine nicht mehr in der Lage, die jeweiligen spezifischen IgE-Antikörper in Patientenserum zu erkennen. Sie wiesen somit eine reduzierte Allergenität auf, was sie zu möglichen geeigneten Kandidaten für eine Immuntherapie machen. Wichtig für einen Mechanismus zur effektiven Immuntherapie ist aber auch die Induktion von blockierenden IgG-Antikörpern, welche unter anderem das Allergen binden und somit verhindern, dass es zu einer Kreuzvernetzung von IgE kommt, welches über den FceRI-Rezeptor auf der Oberfläche von Mastzellen gebunden ist. In dieser Studie konnte mittels eines Mausmodells in vivo gezeigt werden, dass die beiden Isoformen Dau c 1.01 und Dau c 1.02 des Hauptallergens aus Karotte, welche keine intakten IgE-Epitope mehr aufwiesen trotzdem noch in der Lage waren solche blockierenden Antikörper zu induzieren. Die Funktionalität dieser Antikörper mit IgE um das Allergen zu konkurrieren, wurde mittels Inhibition der Bindung von humanem IgE an das entsprechende Allergen durch Zugabe der entsprechenden Mausseren, welche die gebildeten IgG Antikörper enthielten, nachgewiesen und war vergleichbar mit der Inhibitionswirkung von Seren der Mäuse, die mit den Wildtyp-Allergenen immunisiert wurden. Wurden Proteine eingesetzt, die nicht nur eine zerstörte Struktur aufwiesen, sondern auch noch als Dimer der beiden Dau c 1 Isoformen mit zerstörter Struktur vorlagen (Dau c 1FP111P), so konnte eine verstärkte Induktion von blockierenden Antikörpern mit erhöhter IgE-Inhibitionswirkung beobachtet werden. Somit ist die Multimerisierung von Allergenen bei gleichzeitiger Zerstörung der Struktur ein geeigneter Ansatz zur Herstellung von hypoallergenen Proteinen. Da Immuntherapeutika möglichst nicht in der Lage sein sollten allergische Reaktionen auszulösen, indem sie mit bestehenden IgE-Antikörpern kreuzreagieren, wurden die hier untersuchten hypoallergenen Proteine auch in Kreuzreaktivitätsstudien eingesetzt. Diese haben gezeigt, dass nur hohe Immunisierungsdosen zur Induktion von IgE führten, welches mit den Wildtyp-Allergenen kreuzreaktiv war. Da aber zur Induktion von blockierenden IgG-Antikörpern bereits eine geringe Dosis an verändertem Allergen ausreichend war, ist dies zu vernachlässigen. Mittels Untersuchungen von IgE-bindenden-Epitopen und gezielter Veränderung von Allergenen, konnte in dieser Studie gezeigt werden, dass nicht nur die Zerstörung der Struktur oder die Oligomerisierung von Allergenen, sondern die Kombination der beiden Methoden eine geeignete Strategie zur Entwicklung neuer Reagenzien für die klassische spezifische Immuntherapie der Lebensmittelallergie darstellen kann.