1. New class of operators where the distance between the identity operator and the generalized Jordan ∗-derivation range is maximal
- Author
-
Nadia Mesbah and Hadia Messaoudene
- Subjects
Pure mathematics ,∗-finite operator ,General Mathematics ,numerical range ,Identity (music) ,New class ,paranormal operator ,Range (mathematics) ,Operator (computer programming) ,47a12 ,QA1-939 ,finite operator ,47b47 ,Numerical range ,Mathematics ,generalized jordan ∗-derivation - Abstract
A new class of operators, larger than ∗ \ast -finite operators, named generalized ∗ \ast -finite operators and noted by Gℱ ∗ ( ℋ ) {{\mathcal{G {\mathcal F} }}}^{\ast }\left({\mathcal{ {\mathcal H} }}) is introduced, where: Gℱ ∗ ( ℋ ) = { ( A , B ) ∈ ℬ ( ℋ ) × ℬ ( ℋ ) : ∥ T A − B T ∗ − λ I ∥ ≥ ∣ λ ∣ , ∀ λ ∈ C , ∀ T ∈ ℬ ( ℋ ) } . {{\mathcal{G {\mathcal F} }}}^{\ast }\left({\mathcal{ {\mathcal H} }})=\{(A,B)\in {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }})\times {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}):\parallel TA-B{T}^{\ast }-\lambda I\parallel \ge | \lambda | ,\hspace{0.33em}\forall \lambda \in {\mathbb{C}},\hspace{0.33em}\forall T\in {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }})\}. Basic properties are given. Some examples are also presented.
- Published
- 2021
- Full Text
- View/download PDF