1. Determining the nanoflare heating frequency of an X-ray Bright Point observed by MaGIXS
- Author
-
Mondal, Biswajit, Athiray, P. S., Winebarger, Amy R., Savage, Sabrina L., Kobayashi, Ken, Bradshaw, Stephen, Barnes, Will, Champey, Patrick R., Cheimets, Peter, Dudik, Jaroslav, Golub, Leon, Mason, Helen E., McKenzie, David E., Moore, Christopher S., Madsen, Chad, Reeves, Katharine K., Testa, Paola, Vigil, Genevieve D., Warren, Harry P., Walsh, Robert W., and Del Zanna, Giulio
- Subjects
Astrophysics - Solar and Stellar Astrophysics - Abstract
Nanoflares are thought to be one of the prime candidates that can heat the solar corona to its multi-million kelvin temperature. Individual nanoflares are difficult to detect with the present generation instruments, however their presence can be inferred by comparing simulated nanoflare-heated plasma emissions with the observed emission. Using HYDRAD coronal loop simulations, we model the emission from an X-ray bright point (XBP) observed by the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS), along with nearest-available observations from the Atmospheric Imaging Assembly (AIA) onboard Solar Dynamics Observatory (SDO) and X-Ray Telescope (XRT) onboard Hinode observatory. The length and magnetic field strength of the coronal loops are derived from the linear-force-free extrapolation of the observed photospheric magnetogram by Helioseismic and Magnetic Imager (HMI) onboard SDO. Each loop is assumed to be heated by random nanoflares, whose magnitude and frequency are determined by the loop length and magnetic field strength. The simulation results are then compared and matched against the measured intensity from AIA, XRT, and MaGIXS. Our model results indicate the observed emissions from the XBP under study could be well matched by a distribution of nanoflares with average delay times 1500 s to 3000 s, which suggest that the heating is dominated by high-frequency events. Further, we demonstrate the high sensitivity of MaGIXS and XRT to diagnose the heating frequency using this method, while AIA passbands are found to be the least sensitive., Comment: Accepted for publication in the Astrophysical Journal (ApJ)
- Published
- 2024