1. Multi-field and multi-scale characterization of novel super insulating panels/systems based on silica aerogels: Thermal, hydric, mechanical, acoustic, and fire performance
- Author
-
Lorenza Bianco, Sebastian Dantz, Kévin Nocentini, Hasan Sayegh, Francesco Giuseppe Caiazzo, Mohamad Nasir Mohamad Ibrahim, Marina Stipetic, Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Polytech Nice-Sophia (Polytech'Lab), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA), Centre Procédés, Énergies Renouvelables, Systèmes Énergétiques (PERSEE), Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Nice Sophia Antipolis (... - 2019) (UNS), MINES ParisTech - École nationale supérieure des mines de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
Fire test ,Environmental Engineering ,Materials science ,business.industry ,Geography, Planning and Development ,0211 other engineering and technologies ,02 engineering and technology ,Building and Construction ,010501 environmental sciences ,Blanket ,7. Clean energy ,01 natural sciences ,Fire performance ,Soundproofing ,Thermal transmittance ,[SPI]Engineering Sciences [physics] ,Thermal conductivity ,13. Climate action ,Thermal insulation ,Insulation system ,021108 energy ,Composite material ,business ,0105 earth and related environmental sciences ,Civil and Structural Engineering - Abstract
The building sector is responsible for a significant part of global energy consumption and greenhouse gas emission. Nowadays, there is a growing interest in the so-called super-insulating materials, particularly Aerogels. The present work examines the performance of novel aerogel blankets obtained thanks to an innovative ambient drying process. Based on these aerogel blankets, two thermal insulation systems are developed: one as external thermal insulation composite system (ETICS) and another one as internal thermal insulation multi-layer system (ITI). The objectives of the current work are to assess the performance of the core material (aerogel blanket) as well as the two developed systems. At a material (core layer) scale, thermal, hydric, and mechanical performance characterizations are carried out. At a system level, in-situ hygrothermal, acoustic, and fire performance characterizations are carried out in real scale test cells. Hygrothermal characterization revealed that the thermal conductivity of the studied blanket is about 0.0165 W/(m.K) in ambient and dry conditions but can increase by up to 40% in a very humid environment (RH > 90%). The integration of the aerogel blanket panels into an interior insulating system, tested in a test-cell located in south of France, show great thermal performance. The U value of the wall decreased from 0.63 W/(m2.K) to 0.33 W/(m2.K)after retrofitting. The in-situ hygrothermal results showed that the external insulation system protects the wall against the moisture risks. For the internally insulated wall, the relative humidity remains lower than 85% even when high moisture generation is present inside the test cell. Concerning the thermal performance, the envelope's thermal transmittance is reduced by more than 80% after applying the insulation systems. The ITI system was tested in-situ to airborne sound insulation (facade), reporting significant acoustic improvement in acoustic insulation: +7 dB, equal to a noise reduction to one quarter compared to the base wall without insulation. The fire test of the ETICS proceeded without any material ignition, while the fire behavior of the internal insulation system depends significantly on the adhesion stability between all single components.
- Published
- 2019
- Full Text
- View/download PDF