1. A spectral/hpelement depth-integrated model for nonlinear wave–body interaction
- Author
-
Mario Ricchiuto, Claes Eskilsson, Allan Peter Engsig-Karup, Umberto Bosi, Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts (CARDAMOM), Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Danmarks Tekniske Universitet = Technical University of Denmark (DTU), RISE Research Institutes of Sweden, Ocean ERANET project MIDWEST, ADEME, SWEA, FCT, PLAFRIM, Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, and Technical University of Denmark [Lyngby] (DTU)
- Subjects
Discretization ,Computational Mechanics ,General Physics and Astronomy ,010103 numerical & computational mathematics ,01 natural sciences ,Wave-body interaction ,Nonlinear and dispersive waves ,Discontinuous Galerkin method ,Wave–body interaction ,Spectral/hp element method ,Convergence (routing) ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,Domain decomposition ,0101 mathematics ,Boussinesq equations ,Spectral/ hp element method ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Coupling ,Physics ,Mechanical Engineering ,Mathematical analysis ,Domain decomposition methods ,[SPI.GCIV.CH]Engineering Sciences [physics]/Civil Engineering/Construction hydraulique ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,Computer Science Applications ,Exponential function ,010101 applied mathematics ,Nonlinear system ,Flow (mathematics) ,Mechanics of Materials ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
We present a spectral/hp element method for a depth-integrated Boussinsq model for the efficient simulation of nonlinear wave-body interaction. The model exploits a `unified' Boussinesq framework, i.e. the flow under the body is also treated with the depth-integrated approach, initially proposed by (Jiang, 2001) and more recently rigorously analysed by (Lannes, 2016). The choice of the Boussinesq equations allows the elimination of the vertical dimension, resulting in a wave-body model with an adequate precision for weakly nonlinear and dispersive waves expressed in horizontal dimensions only. The framework involves the coupling of two different domains with different flow characteristics. In this work we employ flux-based conditions for domain coupling, following the recipes provided by the discontinuous Galerkin spectral/hp element framework. Inside each domain, the continuous spectral/hp element method is used to solve the appropriate flow model. The spectral/hp element method allows to achieve high-order, possibly exponential, convergence for non-breaking waves and account for the nonlinear interaction with fixed and floating bodies. Our main contribution is to include floating surface-piercing bodies in the conventional depth-integrated Boussinesq framework and the use of a spectral/hp element method for high-order accurate numerical discretization in space. The model is validated against published results for wave-body interaction and confirmed to have excellent accuracy. The proposed nonlinear model is demonstrated to be relevant for the simulation of wave energy devices.
- Published
- 2019