1. A framework for the cross-sectoral integration of multi-model impact projections: land use decisions under climate impacts uncertainties
- Author
-
Katja Frieler, Taikan Oki, Qiuhong Tang, Jens Heinke, Almut Arneth, Douglas B. Clark, Jacob Schewe, Simon N. Gosling, Mark R. Lomas, Dominik Wisser, Yoshimitsu Masaki, Balázs M. Fekete, Ingjerd Haddeland, Pete Falloon, P. Ciais, Franziska Piontek, Christoph Schmitz, Kazuya Nishina, Hans Joachim Schellnhuber, Elke Stehfest, Anders Levermann, Andrew D. Friend, Petra Döll, C. Gellhorn, Erwin Schmid, Marc F. P. Bierkens, Tobias Stacke, Ryan Pavlick, Veronika Huber, Christian Folberth, K. Neumann, Delphine Deryng, Nikolay Khabarov, Lila Warszawski, Alex C. Ruane, Joshua Elliott, Hermann Lotze-Campen, Hydrologie, Sub NMR Spectroscopy, Sub FG LGH 3e geldstroom, Landscape functioning, Geocomputation and Hydrology, Max-Planck-Institut für Extraterrestrische Physik (MPE), Potsdam Institute for Climate Impact Research (PIK), Department of Physical Geography and Ecosystems Analysis, Geobiosphere Science Centre, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ICOS-ATC (ICOS-ATC), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), NASA Goddard Institute for Space Studies (GISS), NASA Goddard Space Flight Center (GSFC), Institute of Physical Geography, Norwegian Water Resources and Energy Directorate (NVE), Centre for Terrestrial Carbon Dynamics: National Centre for Earth Observation (CTCD), University of Sheffield [Sheffield], Department of Life Science, Tokyo Institute of Technology [Tokyo] (TITECH), Institute of Industrial Science, Max Planck Institute for Meteorology (MPI-M), Max-Planck-Gesellschaft, Netherlands Environmental Assessment Agency, Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and Department of Geosciences
- Subjects
lcsh:Dynamic and structural geology ,Natural resource economics ,Population ,Climate change ,7. Clean energy ,Robust decision-making ,lcsh:QE500-639.5 ,Laboratory of Geo-information Science and Remote Sensing ,11. Sustainability ,ddc:550 ,Life Science ,Laboratorium voor Geo-informatiekunde en Remote Sensing ,lcsh:Science ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,education ,ComputingMilieux_MISCELLANEOUS ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,2. Zero hunger ,education.field_of_study ,Food security ,business.industry ,lcsh:QE1-996.5 ,Global warming ,Environmental resource management ,15. Life on land ,PE&RC ,lcsh:Geology ,Earth sciences ,Climate change mitigation ,Agriculture and Soil Science ,13. Climate action ,Greenhouse gas ,General Earth and Planetary Sciences ,Environmental science ,lcsh:Q ,Climate model ,business - Abstract
Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impact-model setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop- and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making.
- Published
- 2015
- Full Text
- View/download PDF