1. Hydrothermal Carbonization of Fruit Wastes: A Promising Technique for Generating Hydrochar
- Author
-
Bide Zhang, Mohammad Heidari, Bharat Regmi, Shakirudeen Salaudeen, Precious Arku, Mahendra Thimmannagari, and Animesh Dutta
- Subjects
hydrothermal carbonization ,fruit waste ,mass yield ,energy density ,characterization ,Technology - Abstract
Hydrothermal carbonization (HTC) is a useful method to convert wet biomass to value-added products. Fruit waste generated in juice industries is a huge source of moist feedstock for such conversion to produce hydrochar. This paper deals with four types of fruit wastes as feedstocks for HTC; namely, rotten apple (RA), apple chip pomace (ACP), apple juice pomace (AJP), and grape pomace (GP). The operating conditions for HTC processing were 190 °C, 225 °C, and 260 °C for 15 min. For all samples, higher heating value and fixed carbon increased, while volatile matter and oxygen content decreased after HTC. Except for ACP, the ash content of all samples increased after 225 °C. For RA, AJP, and GP, the possible explanation for increased ash content above 225 °C is that the hydrochar increases in porosity after 230 °C. It was observed that an increase in HTC temperature resulted in an increase in the mass yield for RA and GP, which is in contrast with increasing HTC temperature for lignocellulose biomass. Other characterization tests like thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) also showed that the HTC process can be successfully used to convert fruit wastes into valuable products.
- Published
- 2018
- Full Text
- View/download PDF