1. Effects of the mas-related gene (Mrg) C receptor agonist BAM6-22 on nociceptive reflex activity in naive, monoarthritic and mononeuropathic rats after intraplantar and intrathecal administration.
- Author
-
Schröder W, Alique M, and Herrero JF
- Subjects
- Animals, Arthritis complications, Injections, Spinal, Male, Rats, Rats, Wistar, Arthritis physiopathology, Enkephalins administration & dosage, Enkephalins pharmacology, Neuralgia physiopathology, Nociception drug effects, Nociception physiology, Peptide Fragments administration & dosage, Peptide Fragments pharmacology, Receptors, G-Protein-Coupled agonists, Reflex drug effects
- Abstract
MrgC receptors are selectively expressed on peripheral and central terminals of small calibre nociceptive fibres. Peptide agonists of the MrgC receptor were reported to modulate nociceptive transmission exerting either pro- or antinociceptive effects depending on site of action and pain model used. Here, we investigated the effect of intraplantar and intrathecal administration of the selective MrgC receptor agonist BAM6-22 on mechanically and electrically evoked nociceptive reflex activity as a uniform readout measure in naïve, monoarthritic and mononeuropathic rats. In naïve rats, intraplantar BAM6-22 enhanced, whereas intrathecal BAM6-22 did not modulate mechanically-evoked nociceptive reflex activity. In monoarthritic rats, intraplantar BAM6-22 had no effect, whereas intrathecal BAM6-22 inhibited mechanically evoked nociceptive reflex activity. In mononeuropathic rats, BAM6-22 reduced mechanically evoked nociceptive reflex activity after both intraplantar and intrathecal administration. BAM6-22 did not modulate electrically evoked nociceptive reflex activity in any condition. Thus, the results of the present investigation confirm and add to previous studies demonstrating that site of action, (patho)-physiological state and stimulus modality determine the effect quality of MrgC receptor agonists. It still needs to be explored how concurrent activation of peripheral and spinal MrgC receptors modulates nociceptive processing under conditions of both acute and chronic pain to evaluate the therapeutic potential of putative small molecule MrgC receptor agonists as innovative analgesics., (Copyright © 2015 Elsevier B.V. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF