1. 63 MeV proton-induced mild displacement effects in long-wave infrared InAs/GaSb type-II superlattice barrier infrared detectors
- Author
-
Jean-Philippe Perez, O. Gilard, Philippe Christol, Rodolphe Alchaar, C. Bataillon, Institut d’Electronique et des Systèmes (IES), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Composants à Nanostructure pour le moyen infrarouge (NANOMIR), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), and Centre National d'Études Spatiales [Toulouse] (CNES)
- Subjects
010302 applied physics ,Materials science ,Proton ,Physics::Instrumentation and Detectors ,Infrared ,Superlattice ,Physics::Medical Physics ,General Physics and Astronomy ,02 engineering and technology ,Carrier lifetime ,021001 nanoscience & nanotechnology ,01 natural sciences ,Molecular physics ,Fluence ,[SPI.TRON]Engineering Sciences [physics]/Electronics ,0103 physical sciences ,Irradiation ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS ,Quantum tunnelling ,Dark current - Abstract
In this work, we investigated the effects of 63 MeV proton irradiation on the electrical performance of long-wave infrared InAs/GaSb type-II superlattice barrier detectors. The dark current density increase due to displacement dose effects does not exceed a factor of 2.6, regardless of the absorber thickness, when measured after a proton fluence of 8×1011 H+/cm2 at 100 K. Subsequent analysis showed that the dark current changes behavior after irradiation, and the dominant current is no longer diffusion but generation–recombination and trap-assisted tunneling. Device simulation also allowed us to extract a minority carrier lifetime before and after irradiation, which decreases with increasing fluence as a result of the 63 MeV proton-induced mild material degradation.
- Published
- 2021