18 results on '"Kong D"'
Search Results
2. Role of the bacteriophage T7 and T4 single-stranded DNA-binding proteins in the formation of joint molecules and DNA helicase-catalyzed polar branch migration.
- Author
-
Kong, D, Nossal, N G, and Richardson, C C
- Abstract
Bacteriophage T7 gene 2.5 single-stranded DNA-binding protein and gene 4 DNA helicase together promote pairing of two homologous DNA molecules and subsequent polar branch migration (Kong, D., and Richardson, C. C. (1996) EMBO J. 15, 2010-2019). In this report, we show that gene 2.5 protein is not required for the initiation or propagation of strand transfer once a joint molecule has been formed between the two DNA partners, a reaction that is mediated by the gene 2.5 protein alone. A mutant gene 2.5 protein, gene 2.5-Delta21C protein, lacking 21 amino acid residues at its C terminus, cannot physically interact with gene 4 protein. Although it does bind to single-stranded DNA and promote the formation of joint molecule via homologous base pairing, subsequent strand transfer by gene 4 helicase is inhibited by the presence of the gene 2.5-Delta21C protein. Bacteriophage T4 gene 32 protein likewise inhibits T7 gene 4 protein-mediated strand transfer, whereas Escherichia coli single-stranded DNA-binding protein does not. The 63-kDa gene 4 protein of phage T7 is also a DNA primase in that it catalyzes the synthesis of oligonucleotides at specific sequences during translocation on single-stranded DNA. We find that neither the rate nor extent of strand transfer is significantly affected by concurrent primer synthesis. The bacteriophage T4 gene 41 helicase has been shown to catalyze polar branch migration after the T4 gene 59 helicase assembly protein loads the helicase onto joint molecules formed by the T4 UvsX and gene 32 proteins (Salinas, F., and Kodadek, T. (1995) Cell 82, 111-119). We find that gene 32 protein alone forms joint molecules between partially single-stranded homologous DNA partners and that subsequent branch migration requires this single-stranded DNA-binding protein in addition to the gene 41 helicase and the gene 59 helicase assembly protein. Similar to the strand transfer reaction, strand displacement DNA synthesis catalyzed by T4 DNA polymerase also requires the presence of gene 32 protein in addition to the gene 41 and 59 proteins.
- Published
- 1997
3. The antioxidant activity of alpha-tocopherol-bovine serum albumin complex in micellar and liposome autoxidations.
- Author
-
Barclay, L R, Bailey, A M, and Kong, D
- Abstract
A comparison is made of the antioxidant activity of a water-soluble form of alpha-tocopherol complexed with bovine serum albumin (alpha-T X BSA) with that of micellar alpha-tocopherol and aqueous 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylate (Trolox) to inhibit autoxidation of linoleic acid in sodium dodecyl sulfate micelles. The peroxyl radical trapping ability of alpha-T X BSA compares favorably with that of alpha-tocopherol and Trolox, and all three can be used in quantitative measurements of the susceptibility of the micellar substrate to undergo autoxidation: the oxidizability, for reactions initiated in the micellar phase by di-tertbutylhyponitrite (DBHN) or in the aqueous phase by azobisamidinopropane hydrochloride (ABAP). alpha-Tocopherol and Trolox are also effective antioxidants to inhibit DBHN- or ABAP-initiated autoxidations of dilinoleoylphosphatidylcholine (DLPC) liposomes prepared as multilamellar or unilamellar bilayers characterized by 31P NMR spectra. The oxidizability of DLPC liposomes is determined by various combinations of water-soluble and lipid-soluble initiators and the antioxidants, alpha-tocopherol and Trolox. In contrast, alpha-T X BSA does not effectively trap peroxyl radicals when it is added after initiation of autoxidation in the lipid phase (DBHN) or in the aqueous phase (ABAP). The radical trapping ability of alpha-T X BSA becomes evident if it is mixed with the DLPC for some hours before initiation. This result is interpreted in terms of diffusion of alpha-tocopherol from the bound alpha-T X BSA form to the liposome before it exhibits antioxidant activity.
- Published
- 1985
- Full Text
- View/download PDF
4. Role of the acidic carboxyl-terminal domain of the single-stranded DNA-binding protein of bacteriophage T7 in specific protein-protein interactions.
- Author
-
Kong, D and Richardson, C C
- Abstract
The gene 2.5 single-stranded DNA (ssDNA) binding protein of bacteriophage T7 is essential for T7 DNA replication and recombination. Earlier studies have shown that the COOH-terminal 21 amino acids of the gene 2.5 protein are essential for specific protein-protein interaction with T7 DNA polymerase and T7 DNA helicase/primase. A truncated gene 2.5 protein, in which the acidic COOH-terminal 21 amino acid residues are deleted no longer supports T7 growth, forms dimers, or interacts with either T7 DNA polymerase or T7 helicase/primase in vitro. The single-stranded DNA-binding protein encoded by Escherichia coli (SSB protein) and phage T4 (gene 32 protein) also have acidic COOH-terminal domains, but neither protein can substitute for T7 gene 2.5 protein in vivo. To determine if the specificity for the protein-protein interaction involving gene 2.5 protein resides in its COOH terminus, we replaced the COOH-terminal region of the gene 2.5 protein with the COOH-terminal region from either E. coli SSB protein or T4 gene 32 protein. Both of the two chimeric proteins can substitute for T7 gene 2.5 protein to support the growth of phage T7. The two chimeric proteins, like gene 2.5 protein, form dimers and interact with T7 DNA polymerase and helicase/primase to stimulate their activities. In contrast, chimeric proteins in which the COOH terminus of T7 gene 2.5 protein replaced the COOH terminus of E. coli SSB protein or T4 gene 32 protein cannot support the growth of phage T7. We conclude that an acidic COOH terminus of the gene 2.5 protein is essential for protein-protein interaction, but it alone cannot account for the specificity of the interaction.
- Published
- 1998
5. Catalysis by a new sialidase, deaminoneuraminic acid residue-cleaving enzyme (KDNase Sm), initially forms a less stable alpha-anomer of 3-deoxy-D-glycero-D-galacto-nonulosonic acid and is strongly inhibited by the transition state analogue, 2-deoxy-2, 3-didehydro-D-glycero-D-galacto-2-nonulopyranosonic acid, but not by 2-deoxy-2,3-didehydro-N-acetylneuraminic acid.
- Author
-
Terada, T, Kitajima, K, Inoue, S, Wilson, J C, Norton, A K, Kong, D C, Thomson, R J, von Itzstein, M, and Inoue, Y
- Abstract
Deaminoneuraminic acid residue-cleaving enzyme (KDNase Sm) is a new sialidase that has been induced and purified from Sphingobacterium multivorum. Catalysis by this new sialidase has been studied by enzyme kinetics and 1H NMR spectroscopy. Vmax/Km values determined for synthetic and natural substrates of KDNase Sm reveal that 4-methylumbelliferyl-KDN (KDNalpha2MeUmb, Vmax/Km = 0.033 min-1) is the best substrate for this sialidase, presumably because of its good leaving group properties. The transition state analogue, 2, 3-didehydro-2,3-dideoxy-D-galacto-D-glycero-nonulosonic acid, is a strong competitive inhibitor of KDNase Sm (Ki = 7.7 microM versus Km = 42 microM for KDNalpha2MeUmb). 2-Deoxy-2, 3-didehydro-N-acetylneuraminic acid and 2-deoxy-2, 3-didehydro-N-glycolylneuraminic acid are known to be strong competitive inhibitors for bacterial sialidases such as Arthrobacter ureafaciens sialidase; however, KDNase Sm activity is not significantly inhibited by these compounds. This observation suggests that the hydroxyl group at C-5 is important for recognition of the inhibitor by the enzyme. Reversible addition of water molecule (or hydroxide ion) to the reactive sialosyl cation, presumably formed at the catalytic site of KDNase Sm, eventually gives rise to two different adducts, the alpha- and beta-anomers of free 3-deoxy-D-glycero-D-galacto-nonulosonic acid. 1H NMR spectroscopic studies clearly demonstrate that the thermodynamically less stable alpha-form is preferentially formed as the first product of the cleavage reaction and that isomerization rapidly follows, leading to an equilibrium mixture of the two isomers, the beta-isomer being the major species at equilibrium. Therefore, we propose that KDNase Sm catalysis proceeds via a mechanism common to the known exosialidases, but the recognition of the substituent at C-5 by the enzyme differs.
- Published
- 1997
6. Interaction of human dendritic cell receptor DEC205/CD205 with keratins.
- Author
-
Kong D, Qian Y, Yu B, Hu Z, Cheng C, Wang Y, Fang Z, Yu J, Xiang S, Cao L, and He Y
- Subjects
- Humans, Dendritic Cells metabolism, Ligands, Mannose Receptor chemistry, Mutagenesis, Protein Binding, Protein Folding, Protein Structure, Tertiary, Protein Interaction Domains and Motifs, Crystallography, X-Ray, Keratins, Lectins, C-Type chemistry, Lectins, C-Type genetics, Lectins, C-Type metabolism, Models, Molecular
- Abstract
DEC205 (CD205) is one of the major endocytic receptors on dendritic cells and has been widely used as a receptor target in immune therapies. It has been shown that DEC205 can recognize dead cells through keratins in a pH-dependent manner. However, the mechanism underlying the interaction between DEC205 and keratins remains unclear. Here we determine the crystal structures of an N-terminal fragment of human DEC205 (CysR∼CTLD3). The structural data show that DEC205 shares similar overall features with the other mannose receptor family members such as the mannose receptor and Endo180, but the individual domains of DEC205 in the crystal structure exhibit distinct structural features that may lead to specific ligand binding properties of the molecule. Among them, CTLD3 of DEC205 adopts a unique fold of CTLD, which may correlate with the binding of keratins. Furthermore, we examine the interaction of DEC205 with keratins by mutagenesis and biochemical assays based on the structural information and identify an XGGGX motif on keratins that can be recognized by DEC205, thereby providing insights into the interaction between DEC205 and keratins. Overall, these findings not only improve the understanding of the diverse ligand specificities of the mannose receptor family members at the molecular level but may also give clues for the interactions of keratins with their binding partners in the corresponding pathways., Competing Interests: Conflict of interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
7. Elucidation of the ferrichrome siderophore biosynthetic pathway in albomycin-producing Streptomyces sp. ATCC 700974.
- Author
-
Li Z, He L, Wang X, Huo Q, Zheng G, Kong D, Lu Y, Xia H, and Niu G
- Subjects
- Ferrichrome chemistry, Ferrichrome metabolism, Biosynthetic Pathways, Nucleosides metabolism, Anti-Bacterial Agents metabolism, Siderophores metabolism, Streptomyces genetics, Streptomyces metabolism
- Abstract
Sideromycins are a unique subset of siderophores comprising of a siderophore conjugated to an antimicrobial agent. The "Trojan horse" antibiotic albomycins are unique sideromycins consisting of a ferrichrome-type siderophore conjugated to a peptidyl nucleoside antibiotic. They exhibit potent antibacterial activities against many model bacteria and a number of clinical pathogens. Earlier studies have provided significant insight into the biosynthetic pathway of the peptidyl nucleoside moiety. We herein decipher the biosynthetic pathway of the ferrichrome-type siderophore in Streptomyces sp. ATCC 700974. Our genetic studies suggested that abmA, abmB, and abmQ are involved in the formation of the ferrichrome-type siderophore. Additionally, we performed biochemical studies to demonstrate that a flavin-dependent monooxygenase AbmB and an N-acyltransferase AbmA catalyze sequential modifications of L-ornithine to generate N
5 -acetyl-N5 -hydroxyornithine. Three molecules of N5 -acetyl-N5 -hydroxyornithine are then assembled to generate the tripeptide ferrichrome through the action of a nonribosomal peptide synthetase AbmQ. Of special note, we found out that orf05026 and orf03299, two genes scattered elsewhere in the chromosome of Streptomyces sp. ATCC 700974, have functional redundancy for abmA and abmB, respectively. Interestingly, both orf05026 and orf03299 are situated within gene clusters encoding putative siderophores. In summary, this study provided new insight into the siderophore moiety of albomycin biosynthesis and shed light on the contingency of multiple siderophores in albomycin-producing Streptomyces sp. ATCC 700974., Competing Interests: Conflict of interest The authors declare that they have no conflicts of interest with the contents of this article., (Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
8. Human CIDEC transgene improves lipid metabolism and protects against high-fat diet-induced glucose intolerance in mice.
- Author
-
Gupta A, Balakrishnan B, Karki S, Slayton M, Jash S, Banerjee S, Grahn THM, Jambunathan S, Disney S, Hussein H, Kong D, Lowell BB, Natarajan P, Reddy UK, Gokce N, Sharma VM, and Puri V
- Subjects
- Animals, Cholesterol, Diet, High-Fat adverse effects, Fatty Acids, Nonesterified, Glucose, Humans, Lipase genetics, Lipid Metabolism, Lipoproteins, LDL metabolism, Mice, Nucleotides metabolism, Obesity genetics, Proteins metabolism, Transgenes, Triglycerides, Glucose Intolerance genetics, Glucose Intolerance prevention & control, Insulin Resistance genetics
- Abstract
Cell death-inducing DNA fragmentation factor-like effector C (CIDEC) expression in adipose tissue positively correlates with insulin sensitivity in obese humans. Further, E186X, a single-nucleotide CIDEC variant is associated with lipodystrophy, hypertriglyceridemia, and insulin resistance. To establish the unknown mechanistic link between CIDEC and maintenance of systemic glucose homeostasis, we generated transgenic mouse models expressing CIDEC (Ad-CIDECtg) and CIDEC E186X variant (Ad-CIDECmut) transgene specifically in the adipose tissue. We found that Ad-CIDECtg but not Ad-CIDECmut mice were protected against high-fat diet-induced glucose intolerance. Furthermore, we revealed the role of CIDEC in lipid metabolism using transcriptomics and lipidomics. Serum triglycerides, cholesterol, and low-density lipoproteins were lower in high-fat diet-fed Ad-CIDECtg mice compared to their littermate controls. Mechanistically, we demonstrated that CIDEC regulates the enzymatic activity of adipose triglyceride lipase via interacting with its activator, CGI-58, to reduce free fatty acid release and lipotoxicity. In addition, we confirmed that CIDEC is indeed a vital regulator of lipolysis in adipose tissue of obese humans, and treatment with recombinant CIDEC decreased triglyceride breakdown in visceral human adipose tissue. Our study unravels a central pathway whereby adipocyte-specific CIDEC plays a pivotal role in regulating adipose lipid metabolism and whole-body glucose homeostasis. In summary, our findings identify human CIDEC as a potential 'drug' or a 'druggable' target to reverse obesity-induced lipotoxicity and glucose intolerance., Competing Interests: Conflict of interest The authors declare that they have no conflicts of interest with the contents of this article., (Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
9. mTORC1 regulates high levels of protein synthesis in retinal ganglion cells of adult mice.
- Author
-
Fort PE, Losiewicz MK, Elghazi L, Kong D, Cras-Méneur C, Fingar DC, Kimball SR, Rajala RVS, Smith AJ, Ali RR, Abcouwer SF, and Gardner TW
- Subjects
- Animals, Mechanistic Target of Rapamycin Complex 1 metabolism, Mice, Retina metabolism, Glaucoma metabolism, Retinal Ganglion Cells metabolism
- Abstract
Mechanistic target of rapamycin (mTOR) and mTOR complex 1 (mTORC1), linchpins of the nutrient sensing and protein synthesis pathways, are present at relatively high levels in the ganglion cell layer (GCL) and retinal ganglion cells (RGCs) of rodent and human retinas. However, the role of mTORCs in the control of protein synthesis in RGC is unknown. Here, we applied the SUrface SEnsing of Translation (SUnSET) method of nascent protein labeling to localize and quantify protein synthesis in the retinas of adult mice. We also used intravitreal injection of an adeno-associated virus 2 vector encoding Cre recombinase in the eyes of mtor- or rptor-floxed mice to conditionally knockout either both mTORCs or only mTORC1, respectively, in cells within the GCL. A novel vector encoding an inactive Cre mutant (CreΔC) served as control. We found that retinal protein synthesis was highest in the GCL, particularly in RGC. Negation of both complexes or only mTORC1 significantly reduced protein synthesis in RGC. In addition, loss of mTORC1 function caused a significant reduction in the pan-RGC marker, RNA-binding protein with multiple splicing, with little decrease of the total number of cells in the RGC layer, even at 25 weeks after adeno-associated virus-Cre injection. These findings reveal that mTORC1 signaling is necessary for maintaining the high rate of protein synthesis in RGCs of adult rodents, but it may not be essential to maintain RGC viability. These findings may also be relevant to understanding the pathophysiology of RGC disorders, including glaucoma, diabetic retinopathy, and optic neuropathies., Competing Interests: Conflict of interest The authors declare that they have no conflicts of interest with the contents of this article., (Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
10. Interactions of ferritin with scavenger receptor class A members.
- Author
-
Yu B, Cheng C, Wu Y, Guo L, Kong D, Zhang Z, Wang Y, Zheng E, Liu Y, and He Y
- Subjects
- Animals, Binding Sites, Calcium chemistry, Calcium metabolism, Crystallography, X-Ray, Humans, Kinetics, Macrophages cytology, Macrophages metabolism, Mice, Molecular Dynamics Simulation, Mutagenesis, Site-Directed, Protein Binding, Protein Domains, Protein Structure, Tertiary, Scavenger Receptors, Class A chemistry, Scavenger Receptors, Class A genetics, Ferritins metabolism, Scavenger Receptors, Class A metabolism
- Abstract
Scavenger receptors are a superfamily of membrane-bound receptors that recognize both self and nonself targets. Scavenger receptor class A (SR-A) has five known members (SCARA1 to -5 or SR-A1 to -A5), which are type II transmembrane proteins that form homotrimers on the cell surface. SR-A members recognize various ligands and are involved in multiple biological pathways. Among them, SCARA5 can function as a ferritin receptor; however, the interaction between SCARA5 and ferritin has not been fully characterized. Here, we determine the crystal structures of the C-terminal scavenger receptor cysteine-rich (SRCR) domain of both human and mouse SCARA5 at 1.7 and 2.5 Å resolution, respectively, revealing three Ca
2+ -binding sites on the surface. Using biochemical assays, we show that the SRCR domain of SCARA5 recognizes ferritin in a Ca2+ -dependent manner, and both L- and H-ferritin can be recognized by SCARA5 through the SRCR domain. Furthermore, the potential binding region of SCARA5 on the surface of ferritin is explored by mutagenesis studies. We also examine the interactions of ferritin with other SR-A members and find that SCARA1 (SR-A1, CD204) and MARCO (SR-A2, SCARA2), which are highly expressed on macrophages, also interact with ferritin. By contrast, SCARA3 and SCARA4, the two SR-A members without the SRCR domain, have no detectable binding with ferritin. Overall, these results provide a mechanistic view regarding the interactions between the SR-A members and ferritin that may help to understand the regulation of ferritin homeostasis by scavenger receptors., Competing Interests: Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article., (© 2020 Yu et al.)- Published
- 2020
- Full Text
- View/download PDF
11. Sap1 is a replication-initiation factor essential for the assembly of pre-replicative complex in the fission yeast Schizosaccharomyces pombe .
- Author
-
Guan L, He P, Yang F, Zhang Y, Hu Y, Ding J, Hua Y, Zhang Y, Ye Q, Hu J, Wang T, Jin C, and Kong D
- Subjects
- Cell Cycle Proteins genetics, Cell Cycle Proteins metabolism, DNA, Fungal genetics, DNA-Binding Proteins genetics, Schizosaccharomyces genetics, Schizosaccharomyces pombe Proteins genetics, DNA Replication physiology, DNA, Fungal biosynthesis, DNA-Binding Proteins metabolism, Nucleotide Motifs physiology, Replication Origin physiology, Schizosaccharomyces metabolism, Schizosaccharomyces pombe Proteins metabolism
- Abstract
A central step in the initiation of chromosomal DNA replication in eukaryotes is the assembly of pre-replicative complex (pre-RC) at late M and early G
1 phase of the cell cycles. Since 1973, four proteins or protein complexes, including cell division control protein 6 (Cdc6)/Cdc18, minichromosome maintenance protein complex, origin recognition complex (ORC), and Cdt1, are known components of the pre-RC. Previously, we reported that a non-ORC protein binds to the essential element Δ9 of the Schizosaccharomyces pombe DNA-replication origin ARS3001. In this study, we identified that the non-ORC protein is Sap1. Like ORC, Sap1 binds to DNA origins during cell growth cycles. But unlike ORC, which binds to asymmetric AT-rich sequences through its nine AT-hook motifs, Sap1 preferentially binds to a DNA sequence of 5'-(A/T)n (C/G)(A/T)9-10 (G/C)(A/T)n -3' ( n ≥ 1). We also found that Sap1 and ORC physically interact. We further demonstrated that Sap1 is required for the assembly of the pre-RC because of its essential role in recruiting Cdc18 to DNA origins. Thus, we conclude that Sap1 is a replication-initiation factor that directly participates in the assembly of the pre-RC. DNA-replication origins in fission yeast are defined by possessing two essential elements with one bound by ORC and the other by Sap1., (© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.)- Published
- 2017
- Full Text
- View/download PDF
12. Direct Visualization of RNA-DNA Primer Removal from Okazaki Fragments Provides Support for Flap Cleavage and Exonucleolytic Pathways in Eukaryotic Cells.
- Author
-
Liu B, Hu J, Wang J, and Kong D
- Subjects
- DNA analysis, DNA genetics, DNA ultrastructure, DNA Primers analysis, DNA Primers genetics, DNA Replication, DNA, Fungal analysis, DNA, Fungal genetics, DNA, Fungal metabolism, Endodeoxyribonucleases analysis, Endodeoxyribonucleases genetics, Flap Endonucleases analysis, Flap Endonucleases genetics, Mutation, RNA analysis, RNA genetics, Schizosaccharomyces genetics, Schizosaccharomyces metabolism, Schizosaccharomyces pombe Proteins analysis, Schizosaccharomyces pombe Proteins genetics, DNA metabolism, DNA Primers metabolism, Endodeoxyribonucleases metabolism, Flap Endonucleases metabolism, RNA metabolism, Schizosaccharomyces cytology, Schizosaccharomyces pombe Proteins metabolism, Signal Transduction
- Abstract
During DNA replication in eukaryotic cells, short single-stranded DNA segments known as Okazaki fragments are first synthesized on the lagging strand. The Okazaki fragments originate from ∼35-nucleotide-long RNA-DNA primers. After Okazaki fragment synthesis, these primers must be removed to allow fragment joining into a continuous lagging strand. To date, the models of enzymatic machinery that removes the RNA-DNA primers have come almost exclusively from biochemical reconstitution studies and some genetic interaction assays, and there is little direct evidence to confirm these models. One obstacle to elucidating Okazaki fragment processing has been the lack of methods that can directly examine primer removal in vivo In this study, we developed an electron microscopy assay that can visualize nucleotide flap structures on DNA replication forks in fission yeast ( Schizosaccharomyces pombe ). With this assay, we first demonstrated the generation of flap structures during Okazaki fragment processing in vivo The mean and median lengths of the flaps in wild-type cells were ∼51 and ∼41 nucleotides, respectively. We also used yeast mutants to investigate the impact of deleting key DNA replication nucleases on these flap structures. Our results provided direct in vivo evidence for a previously proposed flap cleavage pathway and the critical function of Dna2 and Fen1 in cleaving these flaps. In addition, we found evidence for another previously proposed exonucleolytic pathway involving RNA-DNA primer digestion by exonucleases RNase H2 and Exo1. Taken together, our observations suggest a dual mechanism for Okazaki fragment maturation in lagging strand synthesis and establish a new strategy for interrogation of this fascinating process., (© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.)
- Published
- 2017
- Full Text
- View/download PDF
13. Cdc24 Is Essential for Long-range End Resection in the Repair of Double-stranded DNA Breaks.
- Author
-
Zhang H, Hua Y, Li R, and Kong D
- Subjects
- Cell Cycle Proteins genetics, DNA, Fungal genetics, Flap Endonucleases genetics, Flap Endonucleases metabolism, Replication Protein A genetics, Replication Protein A metabolism, Schizosaccharomyces genetics, Schizosaccharomyces pombe Proteins genetics, Cell Cycle Proteins metabolism, DNA Breaks, Double-Stranded, DNA Repair physiology, DNA, Fungal metabolism, Schizosaccharomyces metabolism, Schizosaccharomyces pombe Proteins metabolism
- Abstract
Double-stranded DNA breaks (DSBs) are highly detrimental DNA lesions, which may be repaired by the homologous recombination-mediated repair pathway. The 5' to 3' direction of long-range end resection on one DNA strand, in which 3'-single-stranded DNA overhangs are created from broken DNA ends, is an essential step in this pathway. Dna2 has been demonstrated as an essential nuclease in this event, but the molecular mechanism of how Dna2 is recruited to DNA break sites in vivo has not been elucidated. In this study, a novel recombination factor called Cdc24 was identified in fission yeast. We demonstrated that Cdc24 localizes to DNA break sites during the repair of DNA breaks and is an essential factor in long-range end resection. We also determined that Cdc24 plays a direct role in recruiting Dna2 to DNA break sites through its interaction with Dna2 and replication protein A (RPA). Further, this study revealed that RPA acts as the foundation for assembling the machinery for long-range end resection by its essential role in recruiting Cdc24 and Dna2 to DNA break sites. These results define Cdc24 as an essential factor for long-range end resection in the repair of DSBs, opening the door for further investigations into the enzymes involved in long-range end resection for DSB repair., (© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.)
- Published
- 2016
- Full Text
- View/download PDF
14. Pancreatic cancer stem-like cells display aggressive behavior mediated via activation of FoxQ1.
- Author
-
Bao B, Azmi AS, Aboukameel A, Ahmad A, Bolling-Fischer A, Sethi S, Ali S, Li Y, Kong D, Banerjee S, Back J, and Sarkar FH
- Subjects
- AC133 Antigen, Animals, Antigens, CD metabolism, Antigens, Neoplasm metabolism, Apoptosis genetics, Blotting, Western, Cell Adhesion Molecules metabolism, Cell Cycle genetics, Cell Line, Tumor, Cell Movement genetics, Cell Proliferation, Epithelial Cell Adhesion Molecule, Forkhead Transcription Factors metabolism, Gene Expression Profiling, Gene Expression Regulation, Neoplastic, Glycoproteins metabolism, Humans, Hyaluronan Receptors metabolism, Immunohistochemistry, Mice, Mice, SCID, Microscopy, Confocal, Neoplastic Stem Cells pathology, Pancreatic Neoplasms metabolism, Pancreatic Neoplasms pathology, Peptides metabolism, RNA Interference, Reverse Transcriptase Polymerase Chain Reaction, Transcriptional Activation, Xenograft Model Antitumor Assays, Forkhead Transcription Factors genetics, Neoplastic Stem Cells metabolism, Pancreatic Neoplasms genetics
- Abstract
Subpopulations of cancer stem cells (CSCs) or cancer stem-like cells (CSLCs) have been identified from most tumors, including pancreatic cancer (PC), and the existence of these cells is clinically relevant. Emerging evidence suggests that CSLCs participate in cell growth/proliferation, migration/invasion, metastasis, and chemo-radiotherapy resistance, ultimately contributing to poor clinical outcome. However, the pathogenesis and biological significance of CSLCs in PC has not been well characterized. In the present study, we found that isolated triple-marker-positive (CD44(+)/CD133(+)/EpCAM(+)) cells of human PC MiaPaCa-2 and L3.6pl cells behave as CSLCs. These CSLCs exhibit aggressive behavior, such as increased cell growth, migration, clonogenicity, and self-renewal capacity. The mRNA expression profiling analysis showed that CSLCs (CD44(+)/CD133(+)/EpCAM(+)) exhibit differential expression of more than 1,600 mRNAs, including FoxQ1, compared with the triple-marker-negative (CD44(-)/CD133(-)/EpCAM(-)) cells. The knockdown of FoxQ1 by its siRNA in CSLCs resulted in the inhibition of aggressive behavior, consistent with the inhibition of EpCAM and Snail expression. Mouse xenograft tumor studies showed that CSLCs have a 100-fold higher potential for tumor formation and rapid tumor growth, consistent with overexpression of CSC-associated markers/mediators, including FoxQ1, compared with its parental MiaPaCa-2 cells. The inhibition of FoxQ1 attenuated tumor formation and growth, and expression of CSC markers in the xenograft tumor derived from CSLCs of MiaPaCa-2 cells. These data clearly suggest the role of differentially expressed genes in the regulation of CSLC characteristics, further suggesting that targeting some of these genes could be important for the development of novel therapies for achieving better treatment outcome of PC., (© 2014 by The American Society for Biochemistry and Molecular Biology, Inc.)
- Published
- 2014
- Full Text
- View/download PDF
15. Peroxisome Proliferator-activated receptor γ activation by ligands and dephosphorylation induces proprotein convertase subtilisin kexin type 9 and low density lipoprotein receptor expression.
- Author
-
Duan Y, Chen Y, Hu W, Li X, Yang X, Zhou X, Yin Z, Kong D, Yao Z, Hajjar DP, Liu L, Liu Q, and Han J
- Subjects
- 3T3-L1 Cells, Animals, Blotting, Western, Butadienes pharmacology, Cholesterol 7-alpha-Hydroxylase genetics, Cholesterol 7-alpha-Hydroxylase metabolism, Cholesterol, LDL blood, Enzyme Inhibitors pharmacology, Gene Expression, Hep G2 Cells, Humans, Hypoglycemic Agents pharmacology, Liver drug effects, Liver metabolism, Male, Mice, Mice, Inbred C57BL, Microscopy, Fluorescence, Mitogen-Activated Protein Kinase 1 antagonists & inhibitors, Mitogen-Activated Protein Kinase 1 metabolism, Mitogen-Activated Protein Kinase 3 antagonists & inhibitors, Mitogen-Activated Protein Kinase 3 metabolism, Nitriles pharmacology, PPAR gamma agonists, PPAR gamma genetics, Phosphorylation drug effects, Pioglitazone, Proprotein Convertase 9, Proprotein Convertases genetics, Receptors, LDL genetics, Reverse Transcriptase Polymerase Chain Reaction, Serine Endopeptidases genetics, Sterol Regulatory Element Binding Protein 2 genetics, Sterol Regulatory Element Binding Protein 2 metabolism, Thiazolidinediones pharmacology, PPAR gamma metabolism, Proprotein Convertases metabolism, Receptors, LDL metabolism, Serine Endopeptidases metabolism
- Abstract
Proprotein convertase subtilisin kexin type 9 (PCSK9) plays an important role in cholesterol homeostasis by enhancing the degradation of LDL receptor (LDLR) protein. Peroxisome proliferator-activated receptor γ (PPARγ) has been shown to be atheroprotective. PPARγ can be activated by ligands and/or dephosphorylation with ERK1/2 inhibitors. The effect of PPARγ on PCSK9 and LDLR expression remains unknown. In this study, we investigated the effects of PPARγ on PCSK9 and LDLR expression. At the cellular levels, PPARγ ligands induced PCSK9 mRNA and protein expression in HepG2 cells. PCSK9 expression was induced by inhibition of ERK1/2 activity but inhibited by ERK1/2 activation. The mutagenic study and promoter activity assay suggested that the induction of PCSK9 expression by ERK1/2 inhibitors was tightly linked to PPARγ dephosphorylation. However, PPARγ activation by ligands or ERK1/2 inhibitors induced hepatic LDLR expression. The promoter assay indicated that the induction of LDLR expression by PPARγ was sterol regulatory element-dependent because PPARγ enhanced sterol regulatory element-binding protein 2 (SREBP2) processing. In vivo, administration of pioglitazone or U0126 alone increased PCSK9 expression in mouse liver but had little effect on PCSK9 secretion. However, the co-treatment of pioglitazone and U0126 enhanced both PCSK9 expression and secretion. Similar to in vitro, the increased PCSK9 expression by pioglitazone and/or U0126 did not result in decreased LDLR expression and function. In contrast, pioglitazone and/or U0126 increased LDLR protein expression and membrane translocation, SREBP2 processing, and CYP7A1 expression in the liver, which led to decreased total and LDL cholesterol levels in serum. Our results indicate that although PPARγ activation increased PCSK9 expression, PPARγ activation induced LDLR and CYP7A1 expression that enhanced LDL cholesterol metabolism.
- Published
- 2012
- Full Text
- View/download PDF
16. Adrenergic regulation of AMP-activated protein kinase in brown adipose tissue in vivo.
- Author
-
Pulinilkunnil T, He H, Kong D, Asakura K, Peroni OD, Lee A, and Kahn BB
- Subjects
- AMP-Activated Protein Kinases antagonists & inhibitors, AMP-Activated Protein Kinases genetics, Adipose Tissue, Brown innervation, Adrenergic Antagonists pharmacology, Animals, Ion Channels genetics, Ion Channels metabolism, Mice, Mice, Knockout, Mitochondrial Proteins genetics, Mitochondrial Proteins metabolism, Phosphorylation drug effects, Phosphorylation physiology, Protein Kinase Inhibitors pharmacology, Proto-Oncogene Proteins c-akt antagonists & inhibitors, Proto-Oncogene Proteins c-akt genetics, Proto-Oncogene Proteins c-akt metabolism, Receptors, Adrenergic genetics, Uncoupling Protein 1, AMP-Activated Protein Kinases metabolism, Adipose Tissue, Brown metabolism, Receptors, Adrenergic metabolism
- Abstract
AMP-activated protein kinase (AMPK), an evolutionarily conserved serine-threonine kinase that senses cellular energy status, is activated by stress and neurohumoral stimuli. We investigated the mechanisms by which adrenergic signaling alters AMPK activation in vivo. Brown adipose tissue (BAT) is highly enriched in sympathetic innervation, which is critical for regulation of energy homeostasis. We performed unilateral denervation of BAT in wild type (WT) mice to abolish neural input. Six days post-denervation, UCP-1 protein levels and AMPK α2 protein and activity were reduced by 45%. In β(1,2,3)-adrenergic receptor knock-out mice, unilateral denervation led to a 25-45% decrease in AMPK activity, protein expression, and Thr(172) phosphorylation. In contrast, acute α- or β-adrenergic blockade in WT mice resulted in increased AMPK α Thr(172) phosphorylation and AMPK α1 and α2 activity in BAT. But short term blockade of α-adrenergic signaling in β(1,2,3)-adrenergic receptor knock-out mice resulted in decreased AMPK activity in BAT, which strongly correlated with enhanced phosphorylation of AMPK on Ser(485/491), a site associated with inhibition of AMPK activity. Both PKA and AKT inhibitors attenuated AMPK Ser(485/491) phosphorylation resulting from α-adrenergic blockade and prevented decreases in AMPK activity. In vitro mechanistic studies in BAT explants showed that the effects of α-adrenergic blockade appeared to be secondary to inhibition of oxygen consumption. In conclusion, adrenergic pathways regulate AMPK activity in vivo acutely via alterations in Thr(172) phosphorylation and chronically through changes in the α catalytic subunit protein levels. Furthermore, AMPK α Ser(485/491) phosphorylation may be a novel mechanism to inhibit AMPK activity in vivo and alter its biological effects.
- Published
- 2011
- Full Text
- View/download PDF
17. Regulation of Akt/FOXO3a/GSK-3beta/AR signaling network by isoflavone in prostate cancer cells.
- Author
-
Li Y, Wang Z, Kong D, Li R, Sarkar SH, and Sarkar FH
- Subjects
- Cell Line, Tumor, Cell Proliferation drug effects, Cyclin-Dependent Kinase Inhibitor p27, Down-Regulation drug effects, Forkhead Box Protein O3, Glycogen Synthase Kinase 3 beta, Humans, Intracellular Signaling Peptides and Proteins metabolism, Isoflavones therapeutic use, Male, Prostatic Neoplasms prevention & control, Response Elements, Transcriptional Activation, Apoptosis drug effects, Forkhead Transcription Factors metabolism, Gene Expression Regulation, Neoplastic drug effects, Glycogen Synthase Kinase 3 metabolism, Isoflavones pharmacology, Prostatic Neoplasms metabolism, Proto-Oncogene Proteins c-akt metabolism, Receptors, Androgen metabolism, Signal Transduction drug effects
- Abstract
We have previously shown that genistein could inhibit Akt activation and down-regulate AR (androgen receptor) and PSA (prostate-specific antigen) expression in prostate cancer (PCa) cells. However, pure genistein showed increased lymph node metastasis in an animal model, but such an adverse effect was not seen with isoflavone, suggesting that further mechanistic studies are needed for elucidating the role of isoflavone in PCa. It is known that FOXO3a and GSK-3beta, targets of Akt, regulate cell proliferation and apoptosis. Moreover, FOXO3a, GSK-3beta, and Src are AR regulators and regulate transactivation of AR, mediating the development and progression of PCa. Therefore, we investigated the molecular effects of isoflavone on the Akt/FOXO3a/GSK-3beta/AR signaling network in hormone-sensitive LNCaP and hormone-insensitive C4-2B PCa cells. We found that isoflavone inhibited the phosphorylation of Akt and FOXO3a, regulated the phosphorylation of Src, and increased the expression of GSK-3beta, leading to the down-regulation of AR and its target gene PSA. We also found that isoflavone inhibited AR nuclear translocation and promoted FOXO3a translocation to the nucleus. By electrophoretic mobility shift assay and chromatin immunoprecipitation assay, we found that isoflavone inhibited FOXO3a binding to the promoter of AR and increased FOXO3a binding to the p27(KIP1) promoter, resulting in the alteration of AR and p27(KIP1) expression, the inhibition of cell proliferation, and the induction of apoptosis in both androgen-sensitive and -insensitive PCa cells. These results suggest that isoflavone-induced inhibition of cell proliferation and induction of apoptosis are partly mediated through the regulation of the Akt/FOXO3a/GSK-3beta/AR signaling network. In conclusion, our data suggest that isoflavone could be useful for the prevention and/or treatment of PCa.
- Published
- 2008
- Full Text
- View/download PDF
18. Regulation of FOXO3a/beta-catenin/GSK-3beta signaling by 3,3'-diindolylmethane contributes to inhibition of cell proliferation and induction of apoptosis in prostate cancer cells.
- Author
-
Li Y, Wang Z, Kong D, Murthy S, Dou QP, Sheng S, Reddy GP, and Sarkar FH
- Subjects
- Active Transport, Cell Nucleus, Anticarcinogenic Agents pharmacology, Cell Line, Tumor, Cell Proliferation, Cyclin-Dependent Kinase Inhibitor p27 metabolism, Forkhead Box Protein O3, Glycogen Synthase Kinase 3 beta, Humans, Male, Models, Biological, Prostatic Neoplasms pathology, Apoptosis, Forkhead Transcription Factors metabolism, Glycogen Synthase Kinase 3 metabolism, Indoles pharmacology, Signal Transduction, beta Catenin metabolism
- Abstract
Previous studies from our laboratory have shown anti-proliferative and pro-apoptotic effects of 3,3'-diindolylmethane (DIM) through regulation of Akt and androgen receptor (AR) in prostate cancer cells. However, the mechanism by which DIM regulates Akt and AR signaling pathways has not been fully investigated. It has been known that FOXO3a and glycogen synthase kinase-3beta (GSK-3beta), two targets of activated Akt, interact with beta-catenin, regulating cell proliferation and apoptotic cell death. More importantly, FOXO3a, GSK-3beta, and beta-catenin are all AR coregulators and regulate the activity of AR, mediating the development and progression of prostate cancers. Here, we investigated the molecular effects of B-DIM, a formulated DIM with higher bioavailability, on Akt/FOXO3a/GSK-3beta/beta-catenin/AR signaling in hormone-sensitive LNCaP and hormone-insensitive C4-2B prostate cancer cells. We found that B-DIM significantly inhibited the phosphorylation of Akt and FOXO3a and increased the phosphorylation of beta-catenin, leading to the inhibition of cell growth and induction of apoptosis. We also found that B-DIM significantly inhibited beta-catenin nuclear translocation. By electrophoretic mobility shift and chromatin immunoprecipitation assays, we found that B-DIM inhibited FOXO3a binding to the promoter of AR and promoted FOXO3a binding to the p27(KIP1) promoter, resulting in the alteration of AR and p27(KIP1) expression, the inhibition of cell proliferation, and the induction of apoptosis in both androgen-sensitive and -insensitive prostate cancer cells. These results suggest that B-DIM-induced cell growth inhibition and apoptosis induction are partly mediated through the regulation of Akt/FOXO3a/GSK-3beta/beta-catenin/AR signaling. Therefore, B-DIM could be a promising non-toxic agent for possible treatment of hormone-sensitive but most importantly hormone-refractory prostate cancers.
- Published
- 2007
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.