7 results on '"R D Ferdman"'
Search Results
2. Studying the Solar system with the International Pulsar Timing Array
- Author
-
R N Caballero, Y J Guo, K J Lee, P Lazarus, D J Champion, G Desvignes, M Kramer, K Plant, Z Arzoumanian, M Bailes, C G Bassa, N D R Bhat, A Brazier, M Burgay, S Burke-Spolaor, S J Chamberlin, S Chatterjee, I Cognard, J M Cordes, S Dai, P Demorest, T Dolch, R D Ferdman, E Fonseca, J R Gair, N Garver-Daniels, P Gentile, M E Gonzalez, E Graikou, L Guillemot, G Hobbs, G H Janssen, R Karuppusamy, M J Keith, M Kerr, M T Lam, P D Lasky, T J W Lazio, L Levin, K Liu, A N Lommen, D R Lorimer, R S Lynch, D R Madison, R N Manchester, J W McKee, M A McLaughlin, S T McWilliams, C M F Mingarelli, D J Nice, S Osłowski, N T Palliyaguru, T T Pennucci, B B P Perera, D Perrodin, A Possenti, S M Ransom, D J Reardon, S A Sanidas, A Sesana, G Shaifullah, R M Shannon, X Siemens, J Simon, R Spiewak, I Stairs, B Stappers, D R Stinebring, K Stovall, J K Swiggum, S R Taylor, G Theureau, C Tiburzi, L Toomey, R van Haasteren, W van Straten, J P W Verbiest, J B Wang, X J Zhu, and W W Zhu
- Published
- 2018
- Full Text
- View/download PDF
3. A Pulsar-Based Time-Scale from the International Pulsar Timing Array
- Author
-
G. Hobbs, L. Guo, R. N. Caballero, W. Coles, K. J. Lee, R. N. Manchester, D. J. Reardon, D. Matsakis, M. L. Tong, Z Arzoumanian, M Bailes, C. G. Bassa, N. D. R. Bhat, A. Brazier, S. Burke-Spolaor, D. J. Champion, S. Chatterjee, I. Cognard, S. Dai, G. Desvignes, T Dolch, R. D. Ferdman, E. Graikou, L Guillemot, G H Janssen, M. J. Keith, M Kerr, M Kramer, M T Lam, K Liu, A Lyne, T J W Lazio, R Lynch, J W McKee, M A McLaughlin, C M F Mingarelli, D J Nice, S Oslowski, T T Pennucci, B B P Perera, D Perrodin, A Possenti, C J Russell, S Sanidas, A Sesana, G Shaifullah, R M Shannon, J Simon, R Spiewak, I H Stairs, B W Stappers, J K Swiggum, S R Taylor, G Theureau, L Toomey, R van Haasteren, J B Wang, Y Wang, and X J Zhu
- Subjects
Astronomy - Abstract
We have constructed a new time-scale, TT(IPTA16), based on observations of radio pulsars presented in the first data release from the International Pulsar Timing Array (IPTA). We used two analysis techniques with independent estimates of the noise models for the pulsar observations and different algorithms for obtaining the pulsar time-scale. The two analyses agree within the estimated uncertainties and both agree with TT(BIPM17), a post-corrected time-scale produced by the Bureau International des Poids et Mesures (BIPM). We show that both methods could detect significant errors in TT(BIPM17) if they were present. We estimate the stability of the atomic clocks from which TT(BIPM17) is derived using observations of four rubidium fountain clocks at the US Naval Observatory. Comparing the power spectrum of TT(IPTA16) with that of these fountain clocks suggests that pulsar-based time-scales are unlikely to contribute to the stability of the best time-scales over the next decade, but they will remain a valuable independent check on atomic time-scales. We also find that the stability of the pulsar-based time-scale is likely to be limited by our knowledge of solar-system dynamics, and that errors in TT(BIPM17) will not be a limiting factor for the primary goal of the IPTA, which is to search for the signatures of nano-Hertz gravitational waves.
- Published
- 2019
- Full Text
- View/download PDF
4. The International Pulsar Timing Array: Second Data Release
- Author
-
B B P Perara, M E DeCesar, P B Demorest, M Kerr, L Lentati, D J Nice, S Oslowski, S M Ransom, M J Keith, Z Arzoumanian, M Bailes, P T Baker, C G Bassa, NDR Bhat, A Brazier, M Burgay, S Burke-Spolaor, R N Caballero, D J Champion, S Chatterjee, S Chen, I Cognard, J M Cordes, K Crowter, S Dai, G Desvignes, T Dolch, R D Ferdman, E C Ferrara, E Fonseca, J M Goldstein, E Graikou, L Guillemot, J S Hazboun, G Hobbs, H Hu, K Islo, G H Janssen, R Karuppusam, M Kramer, M T Lam, K J Lee, K Liu, J Luo, A G Lyne, R N Manchester, J W McKee, M A McLaughlin, C M F Mingarelli, A P Parthasarathy, T T Pennucci, D Perrodin, A Possenti, D J Reardon, C J Russell, S A Sanidas, A Sesana, G Shaifullah, R M Shannon, X Siemens, J Simon, R Spiewak, I H Stairs, B W Stappers, J K Swiggum, S R Taylor, G Theureau, C Tiburzi, M Vallisneri, A Vecchio, J B Wang, S B Zhang, L Zhang, W W Zhu, and X J Zhu
- Subjects
Astronomy - Abstract
In this paper, we describe the International Pulsar Timing Array second data release, which includes recent pulsar timing data obtained by three regional consortia: the European Pulsar Timing Array, the North American Nanohertz Observatory for Gravitational Waves, and the Parkes Pulsar Timing Array. We analyse and where possible combine high-precision timing data for 65 millisecond pulsars which are regularly observed by these groups. A basic noise analysis, including the processes which are both correlated and uncorrelated in time, provides noise models and timing ephemerides for the pulsars. We find that the timing precisions of pulsars are generally improved compared to the previous data release, mainly due to the addition of new data in the combination. The main purpose of this work is to create the most up-to-date IPTA data release. These data are publicly available for searches for low-frequency gravitational waves and other pulsar science.
- Published
- 2019
- Full Text
- View/download PDF
5. Tests of Gravitational Symmetries with Pulsar Binary J1713+0747
- Author
-
W W Zhu, G Desvignes, N Wex, R N Caballero, D J Champion, P B Demorest, J A Ellis, G H Janssen, M Kramer, A Krieger, L Lentati, D J Nice, S M Ransom, I H Stairs, B W Stappers, J P W Verbiest, Z Arzoumanian, C G Bassa, M Burgay, I Cognard, K Crowter, T Dolch, R D Ferdman, E Fonseca, M E Gonzalez, E Graikou, L Guillemot, J W T Hessels, A Jessner, G Jones, M L Jones, C Jordan, R Karuppusamy, M T Lam, K Lazaridis, P Lazarus, K J Lee, L Levin, K Liu, A G Lyne, J W McKee, M A McLaughlin, S Oslowski, T Pennucci, D Perrodin, A Possenti, S Sanidas, G Shaifullah, R Smits, K Stovall, J Swiggum, G Theureau, and C Tiburzi
- Subjects
Astronomy - Abstract
Symmetries play a fundamental role in modern theories of gravity. The strong equivalence principle (SEP) constitutes a collection of gravitational symmetries which are all implemented by general relativity. Alternative theories, however, are generally expected to violate some aspects of SEP. We test three aspects of SEP using observed change rates in the orbital period and eccentricity of binary pulsar J1713+0747: (1) the gravitational constant’s constancy as part of locational invariance of gravitation; (2) the universality of free fall (UFF) for strongly self-gravitating bodies; (3) the post-Newtonian parameter ˆα3 in gravitational Lorentz invariance. Based on the pulsar timing result of the combined data set from the North American Nanohertz Gravitational Observatory and the European Pulsar Timing Array, we find G˙ /G = (−0.1 ± 0.9) × 10−12 yr−1, which is weaker than Solar system limits, but applies for strongly self-gravitating objects. Furthermore, we obtain an improved test for a UFF violation by a strongly self-gravitating mass falling in the gravitational field of our Galaxy, with a limit of |Delta| < 0.002 (95 per cent C.L.). Finally, we derive an improved limit on the self-acceleration of a gravitationally bound rotating body, to a preferred reference frame in the Universe, with −3 × 10−20 < ˆα3 < 4 × 10−20 (95 per cent C.L.). These results are based on direct UFF and ˆα3 tests using pulsar binaries, and they overcome various limitations of previous tests of this kind.
- Published
- 2018
- Full Text
- View/download PDF
6. Placing limits on the stochastic gravitational-wave background using European Pulsar Timing Array data
- Author
-
R. van Haasteren, Y. Levin, G. H. Janssen, K. Lazaridis, M. Kramer, B. W. Stappers, G. Desvignes, M. B. Purver, A. G. Lyne, R. D. Ferdman, A. Jessner, I. Cognard, G. Theureau, N. D’Amico, A. Possenti, M. Burgay, A. Corongiu, J. W. T. Hessels, R. Smits, and J. P. W. Verbiest
- Subjects
Physics ,010308 nuclear & particles physics ,Gravitational wave ,Astronomy and Astrophysics ,Function (mathematics) ,Astrophysics ,01 natural sciences ,Gravitational wave background ,European Pulsar Timing Array ,symbols.namesake ,Pulsar timing array ,Amplitude ,Space and Planetary Science ,0103 physical sciences ,symbols ,Limit (mathematics) ,010303 astronomy & astrophysics ,Gaussian process - Abstract
Direct detection of low-frequency gravitational waves ($10^{-9} - 10^{-8}$ Hz) is the main goal of pulsar timing array (PTA) projects. One of the main targets for the PTAs is to measure the stochastic background of gravitational waves (GWB) whose characteristic strain is expected to approximately follow a power-law of the form $h_c(f)=A (f/\hbox{yr}^{-1})^{\alpha}$, where $f$ is the gravitational-wave frequency. In this paper we use the current data from the European PTA to determine an upper limit on the GWB amplitude $A$ as a function of the unknown spectral slope $\alpha$ with a Bayesian algorithm, by modelling the GWB as a random Gaussian process. For the case $\alpha=-2/3$, which is expected if the GWB is produced by supermassive black-hole binaries, we obtain a 95% confidence upper limit on $A$ of $6\times 10^{-15}$, which is 1.8 times lower than the 95% confidence GWB limit obtained by the Parkes PTA in 2006. Our approach to the data analysis incorporates the multi-telescope nature of the European PTA and thus can serve as a useful template for future intercontinental PTA collaborations.
- Published
- 2011
- Full Text
- View/download PDF
7. Noise analysis in the European Pulsar Timing Array data release 2 and its implications on the gravitational-wave background search
- Author
-
A Chalumeau, S Babak, A Petiteau, S Chen, A Samajdar, R N Caballero, G Theureau, L Guillemot, G Desvignes, A Parthasarathy, K Liu, G Shaifullah, H Hu, E van der Wateren, J Antoniadis, A-S Bak Nielsen, C G Bassa, A Berthereau, M Burgay, D J Champion, I Cognard, M Falxa, R D Ferdman, P C C Freire, J R Gair, E Graikou, Y J Guo, J Jang, G H Janssen, R Karuppusamy, M J Keith, M Kramer, K J Lee, X J Liu, A G Lyne, R A Main, J W McKee, M B Mickaliger, B B P Perera, D Perrodin, N K Porayko, A Possenti, S A Sanidas, A Sesana, L Speri, B W Stappers, C Tiburzi, A Vecchio, J P W Verbiest, J Wang, L Wang, H Xu, Chalumeau, A, Babak, S, Petiteau, A, Chen, S, Samajdar, A, Caballero, R, Theureau, G, Guillemot, L, Desvignes, G, Parthasarathy, A, Liu, K, Shaifullah, G, Hu, H, van der Wateren, E, Antoniadis, J, Bak Nielsen, A, Bassa, C, Berthereau, A, Burgay, M, Champion, D, Cognard, I, Falxa, M, Ferdman, R, Freire, P, Gair, J, Graikou, E, Guo, Y, Jang, J, Janssen, G, Karuppusamy, R, Keith, M, Kramer, M, Lee, K, Liu, X, Lyne, A, Main, R, Mckee, J, Mickaliger, M, Perera, B, Perrodin, D, Porayko, N, Possenti, A, Sanidas, S, Sesana, A, Speri, L, Stappers, B, Tiburzi, C, Vecchio, A, Verbiest, J, Wang, J, Wang, L, Xu, H, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Unité Scientifique de la Station de Nançay (USN), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire Univers et Théories (LUTH (UMR_8102)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ITA, USA, GBR, FRA, DEU, CAN, GRC, NLD, CHN, RUS, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and ANR-18-CE31-0015,PTA-France,Recherche d'ondes gravitationnelles avec un réseau de pulsars en France(2018)
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,010308 nuclear & particles physics ,Astronomy ,FOS: Physical sciences ,Astronomy and Astrophysics ,methods: data analysis ,01 natural sciences ,gravitational waves ,Space and Planetary Science ,pulsars: general ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,gravitational wave ,methods: data analysi - Abstract
The European Pulsar Timing Array (EPTA) collaboration has recently released an extended data set for six pulsars (DR2) and reported evidence for a common red noise signal. Here we present a noise analysis for each of the six pulsars. We consider several types of noise: (i) radio frequency independent, "achromatic", and time-correlated red noise; (ii) variations of dispersion measure and scattering; (iii) system and band noise; and (iv) deterministic signals (other than gravitational waves) that could be present in the PTA data. We perform Bayesian model selection to find the optimal combination of noise components for each pulsar. Using these custom models we revisit the presence of the common uncorrelated red noise signal previously reported in the EPTA DR2 and show that the data still supports it with a high statistical significance. Next, we confirm that there is no preference for or against the Hellings-Downs spatial correlations expected for the stochastic gravitational-wave background. The main conclusion of the EPTA DR2 paper remains unchanged despite a very significant change in the noise model of each pulsar. However, modelling the noise is essential for the robust detection of gravitational waves and its impact could be significant when analysing the next EPTA data release, which will include a larger number of pulsars and more precise measurements., 21 pages, 11 figures, 7 tables, 1 appendix figure and 1 appendix table, accepted for publication to MNRAS
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.