1. A rapid mechanism to remobilize and homogenize highly crystalline magma bodies
- Author
-
Alain Burgisser, George W. Bergantz, Institut des Sciences de la Terre d'Orléans (ISTO), Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS), Department of Earth and Space Sciences [Seattle], University of Washington [Seattle], and Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Université de Tours-Centre National de la Recherche Scientifique (CNRS)
- Subjects
geography ,Multidisciplinary ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,[SDE.MCG]Environmental Sciences/Global Changes ,Pluton ,Mineralogy ,Crust ,010502 geochemistry & geophysics ,01 natural sciences ,Two stages ,Igneous rock ,Rheology ,Volcano ,13. Climate action ,Homogeneity (physics) ,[SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/Volcanology ,Thickening ,Petrology ,Geology ,0105 earth and related environmental sciences - Abstract
International audience; The largest products of magmatic activity on Earth, the great bodies of granite and their corresponding large eruptions, have a dual nature: homogeneity at the large scale and spatial and temporal heterogeneity at the small scale1-4. This duality calls for amechanism that selectively removes the large-scale heterogeneities associated with the incremental assembly4 of these magmatic systems and yet occurs rapidly despite crystal-rich, viscous conditions seemingly resistant to mixing2,5. Here we show that a simple dynamic template can unify a wide range of apparently contradictory observations from both large plutonic bodies and volcanic systems by a mechanism of rapid remobilization (unzipping) of highly viscous crystalrich mushes. We demonstrate that this remobilization can lead to rapid overturn and produce the observed juxtaposition ofmagmatic materials with very disparate ages and complex chemical zoning. What distinguishes our model is the recognition that the process has two stages. Initially, a stiff mushy magma is reheated from below, producing a reduction in crystallinity that leads to the growth of a subjacent buoyant mobile layer. When the thickening mobile layer becomes sufficiently buoyant, it penetrates the overlying viscous mushy magma. This second stage rapidly exports homogenized material from the lower mobile layer to the top of the system, and leads to partial overturn within the viscous mush itself as an additional mechanism of mixing. Model outputs illustrate that unzipping can rapidly produce large amounts of mobile magma available for eruption. The agreement between calculated and observed unzipping rates for historical eruptions at Pinatubo and at Montserrat demonstrates the general applicability of the model. This mechanism furthers our understanding of both the formation of periodically homogenized plutons (crust building) and of ignimbrites by large eruptions.
- Published
- 2011