1. Intense self-compressed, self-phase-stabilized few-cycle pulses at 2 microm from an optical filament
- Author
-
P. Colosimo, Anne Marie March, K. D. Schultz, J. Wheeler, Cosmin I. Blaga, Razvan Chirla, Emily Sistrunk, Louis F. DiMauro, C. Roedig, James P. Cryan, Rodrigo Lopez-Martens, J. Tate, Christoph P. Hauri, E. Power, Gilles Doumy, Laboratoire d'optique appliquée (LOA), École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Department of Physics, Ohio State University [Columbus] (OSU), Center for Ultrafast Optical Sciences (CUOS), University of Michigan [Ann Arbor], and University of Michigan System-University of Michigan System
- Subjects
Optical amplifier ,Physics ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,business.industry ,Phase (waves) ,Nonlinear optics ,chemistry.chemical_element ,01 natural sciences ,Optical parametric amplifier ,Atomic and Molecular Physics, and Optics ,010309 optics ,Protein filament ,Optics ,Xenon ,chemistry ,Filamentation ,Pulse compression ,0103 physical sciences ,010306 general physics ,business - Abstract
We report the compression of intense, carrier-envelope phase stable mid-IR pulses down to few-cycle duration using an optical filament. A filament in xenon gas is formed by using self-phase stabilized 330 microJ 55 fs pulses at 2 microm produced via difference-frequency generation in a Ti:sapphire-pumped optical parametric amplifier. The ultrabroadband 2 microm carrier-wavelength output is self-compressed below 3 optical cycles and has a 270 microJ pulse energy. The self-locked phase offset of the 2 microm difference-frequency field is preserved after filamentation. This is to our knowledge the first experimental realization of pulse compression in optical filaments at mid-IR wavelengths (lambda0.8 microm).
- Published
- 2007
- Full Text
- View/download PDF