1. Measured response of bubble neutron detectors and prospects for alpha knock-on diagnostics
- Author
-
A. Belian, J. Liptac, E. Morse, R. K. Fisher, C. E. Brient, M. L. Loughlin, A. L. Roquemore, S. S. Medley, Paul Parks, and D. C. Ingram
- Subjects
inorganic chemicals ,Physics ,Bonner sphere ,Neutron emission ,Nuclear Theory ,technology, industry, and agriculture ,Neutron temperature ,Nuclear physics ,Neutron generator ,Physics::Plasma Physics ,biological sciences ,Neutron cross section ,Neutron detection ,Neutron source ,lipids (amino acids, peptides, and proteins) ,Neutron ,Nuclear Experiment ,Instrumentation - Abstract
Measurement of the neutron energy spectrum above ∼16 MeV will yield information on the spatial and energy distributions of confined fast alphas in deuterium–tritium (DT) tokamaks (Fisher, Nucl. Fusion; Gorini Rev. Sci. Instrum.). The energetic neutrons result from fusion reactions involving the energetic ions created by alpha-fuel ion knock-on collisions. Standard two-gas bubble neutron detectors, designed to only detect neutrons with energies above a selectable threshold determined by the gas mixture, were used in preliminary attempts to measure the knock-on neutrons from DT plasmas in the Tokamak Fusion Test Reactor and Joint European Torus (JET). Subsequent measurements at accelerator neutron sources showed an unexpected below-threshold detector response that prevented observations of the alpha-induced neutron tails. Spontaneous bubble nucleation measurements show that the majority of this below-threshold response is due to slight variations in the gas mixture, and is not present in single-gas detectors. Single-gas detectors will be tested at the University of California Berkeley to determine the neutron energy threshold as a function of detector operating temperature and to confirm their suitability for alpha knock-on tail measurements. An array of single-gas detectors operating at different temperatures should allow measurements of the alpha knock-on neutron tail during planned DT experiments on JET.Measurement of the neutron energy spectrum above ∼16 MeV will yield information on the spatial and energy distributions of confined fast alphas in deuterium–tritium (DT) tokamaks (Fisher, Nucl. Fusion; Gorini Rev. Sci. Instrum.). The energetic neutrons result from fusion reactions involving the energetic ions created by alpha-fuel ion knock-on collisions. Standard two-gas bubble neutron detectors, designed to only detect neutrons with energies above a selectable threshold determined by the gas mixture, were used in preliminary attempts to measure the knock-on neutrons from DT plasmas in the Tokamak Fusion Test Reactor and Joint European Torus (JET). Subsequent measurements at accelerator neutron sources showed an unexpected below-threshold detector response that prevented observations of the alpha-induced neutron tails. Spontaneous bubble nucleation measurements show that the majority of this below-threshold response is due to slight variations in the gas mixture, and is not present in single-gas detector...
- Published
- 2001
- Full Text
- View/download PDF