33 results on '"D. C. Glattli"'
Search Results
2. Scaling behavior of electron decoherence in a graphene Mach-Zehnder interferometer
- Author
-
M. Jo, June-Young M. Lee, A. Assouline, P. Brasseur, K. Watanabe, T. Taniguchi, P. Roche, D. C. Glattli, N. Kumada, F. D. Parmentier, H. -S. Sim, and P. Roulleau
- Subjects
Science - Abstract
Quantum Hall edge channels provide a platform to study electron interference, however understanding decoherence in these systems remains an open problem. Jo et al. realize a regime of suppressed decoherence in an electronic Mach-Zehnder interferometer formed in a graphene quantum Hall pn junction.
- Published
- 2022
- Full Text
- View/download PDF
3. Strongly Correlated Charge Transport in Silicon Metal-Oxide-Semiconductor Field-Effect Transistor Quantum Dots
- Author
-
Xavier Jehl, Preden Roulleau, Minky Seo, Patrice Roche, François Parmentier, D. C. Glattli, S. Barraud, Louis Hutin, Marc Sanquer, Groupe Nano-Electronique (GNE), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de Transport Electronique Quantique et Supraconductivité (LaTEQS), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), and European Project: 679531,H2020,ERC-2015-STG,COHEGRAPH(2016)
- Subjects
Physics ,[PHYS]Physics [physics] ,Condensed matter physics ,Silicon ,Transistor ,Shot noise ,General Physics and Astronomy ,chemistry.chemical_element ,Charge (physics) ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,01 natural sciences ,law.invention ,chemistry ,Quantum dot ,law ,0103 physical sciences ,Quasiparticle ,Field-effect transistor ,010306 general physics ,0210 nano-technology ,Quantum - Abstract
International audience; Quantum shot noise probes the dynamics of charge transfers through a quantum conductor, reflecting whether quasiparticles flow across the conductor in a steady stream, or in syncopated bursts. We have performed high-sensitivity shot noise measurements in a quantum dot obtained in a silicon metal-oxide-semiconductor field-effect transistor. The quality of our device allows us to precisely associate the different transport regimes and their statistics with the internal state of the quantum dot. In particular, we report on large current fluctuations in the inelastic cotunneling regime, corresponding to different highly correlated, non-Markovian charge transfer processes. We have also observed unusually large current fluctuations at low energy in the elastic cotunneling regime, the origin of which remains to be fully investigated.
- Published
- 2018
- Full Text
- View/download PDF
4. Pseudorandom binary injection of levitons for electron quantum optics
- Author
-
P. Roulleau, D. C. Glattli, Groupe Nano-Electronique (GNE), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, ANR-16-CE30-0015,FullyQuantum,Manipulation tout-quantique de pulses de charges entières et non-entières dans des fils quantiques(2016), and European Project: 680875,H2020,ERC-2015-PoC,C-Levitonics(2015)
- Subjects
Floquet theory ,Physics ,Quantum optics ,[PHYS]Physics [physics] ,Condensed Matter - Mesoscale and Nanoscale Physics ,Shot noise ,FOS: Physical sciences ,02 engineering and technology ,Electron ,021001 nanoscience & nanotechnology ,01 natural sciences ,Qubit ,Quantum mechanics ,0103 physical sciences ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Scattering theory ,Leviton ,PACS numbers: 73.23.-b,73.50.Td,42.50.-p,42.50.Ar ,010306 general physics ,0210 nano-technology ,Coherence (physics) - Abstract
The recent realization of single electron sources let us envision performing electron quantum optics experiments, where electrons can be viewed as flying qubits propagating in a ballistic conductor. To date, all electron sources operate in a periodic electron injection mode leading to energy spectrum singularities in various physical observables which sometimes hide the bare nature of physical effects. To go beyond this, we propose a spread-spectrum approach where electron flying qubits are injected in a non-periodic manner following a pseudorandom binary bit pattern. Extending the Floquet scattering theory approach from periodic to spread-spectrum drive, the shot noise of pseudorandom binary sequences of single electron injection can be calculated for leviton and non-leviton sources. Our new approach allows us to disentangle the physics of the manipulated excitations from that of the injection protocol. In particular, the spread spectrum approach is shown to provide a better knowledge of electronic Hong Ou Mandel correlations and to clarify the nature of the pulse train coherence and the role of the dynamical orthogonality catastrophe for non-integer charge injection., Comment: 11 pages and 5 figures including 3 new figures, results on quantum coherence and explicit formulae added
- Published
- 2018
- Full Text
- View/download PDF
5. Quantum Hall effect in epitaxial graphene with permanent magnets
- Author
-
T. Cazimajou, Hiroshi Irie, Preden Roulleau, Norio Kumada, Hiroki Hibino, D. C. Glattli, François Parmentier, Yoshiaki Sekine, Groupe Nano-Electronique (GNE), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, NTT Basic Research Laboratories [Tokio], NTT Basic Research Laboratories, the CEA (Projet phare ZeroPOVA), ANR-11-NANO-0004,metrograph,Metrology de l'Effet Hall Quantique dans le graphène(2011), and European Project: 228273,EC:FP7:ERC,ERC-2008-AdG,MEQUANO(2009)
- Subjects
Materials science ,FOS: Physical sciences ,02 engineering and technology ,Superconducting magnet ,Quantum Hall effect ,7. Clean energy ,01 natural sciences ,Article ,law.invention ,chemistry.chemical_compound ,Condensed Matter::Materials Science ,law ,0103 physical sciences ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Silicon carbide ,010306 general physics ,Superconductivity ,[PHYS]Physics [physics] ,Multidisciplinary ,Condensed matter physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Graphene ,Landau quantization ,021001 nanoscience & nanotechnology ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Neodymium magnet ,chemistry ,Magnet ,0210 nano-technology - Abstract
We have observed the well-kown quantum Hall effect (QHE) in epitaxial graphene grown on silicon carbide (SiC) by using, for the first time, only commercial NdFeB permanent magnets at low temperature. The relatively large and homogeneous magnetic field generated by the magnets, together with the high quality of the epitaxial graphene films, enables the formation of well-developed quantum Hall states at Landau level filling factors $\nu=\pm 2$, commonly observed with superconducting electro-magnets. Furthermore, the chirality of the QHE edge channels can be changed by a top gate. These results demonstrate that basic QHE physics are experimentally accessible in graphene for a fraction of the price of conventional setups using superconducting magnets, which greatly increases the potential of the QHE in graphene for research and applications., Comment: 9 pages, 3 figures
- Published
- 2016
- Full Text
- View/download PDF
6. Photon-Assisted Shot Noise in Graphene in the Terahertz Range
- Author
-
L. N. Serkovic-Loli, Preden Roulleau, D. C. Glattli, François Parmentier, Groupe Nano-Electronique (GNE), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, CEA (Projet phare ZeroPOVA), ANR-11-NANO-0004,metrograph,Metrology de l'Effet Hall Quantique dans le graphène(2011), and European Project: 228273,EC:FP7:ERC,ERC-2008-AdG,MEQUANO(2009)
- Subjects
Photon ,Terahertz radiation ,FOS: Physical sciences ,General Physics and Astronomy ,Physics::Optics ,02 engineering and technology ,01 natural sciences ,Electromagnetic radiation ,Optics ,Noise generator ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,0103 physical sciences ,010306 general physics ,Physics ,Laser ultrasonics ,[PHYS]Physics [physics] ,Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed matter physics ,business.industry ,Quantum noise ,Shot noise ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,021001 nanoscience & nanotechnology ,Burst noise ,0210 nano-technology ,business - Abstract
When subjected to electromagnetic radiation, the fluctuation of the electronic current across a quantum conductor increases. This additional noise, called photon-assisted shot noise, arises from the generation and subsequent partition of electron-hole pairs in the conductor. The physics of photon-assisted shot noise has been thoroughly investigated at microwave frequencies up to 20 GHz, and its robustness suggests that it could be extended to the Terahertz (THz) range. Here, we present measurements of the quantum shot noise generated in a graphene nanoribbon subjected to a THz radiation. Our results show signatures of photon-assisted shot noise, further demonstrating that hallmark time-dependant quantum transport phenomena can be transposed to the THz range., includes supplemental material
- Published
- 2016
- Full Text
- View/download PDF
7. Detecting noise with shot noise using on-chip photon detector
- Author
-
Y. Jompol, David A. Ritchie, T. Jullien, Ian Farrer, D. C. Glattli, Preden Roulleau, B. Roche, Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Groupe Nano-Electronique (GNE), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Cavendish Laboratory, University of Cambridge [UK] (CAM), European Project: 228273,EC:FP7:ERC,ERC-2008-AdG,MEQUANO(2009), Farrer, Ian [0000-0002-3033-4306], Ritchie, David [0000-0002-9844-8350], and Apollo - University of Cambridge Repository
- Subjects
Physics ,Laser ultrasonics ,[PHYS]Physics [physics] ,Fano factor ,Multidisciplinary ,business.industry ,Condensed matter ,Shot noise ,General Physics and Astronomy ,General Chemistry ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Noise (electronics) ,General Biochemistry, Genetics and Molecular Biology ,Particle detector ,Physical sciences ,Optics ,Noise generator ,Image noise ,Nanotechnology ,business ,Quantum - Abstract
International audience; The high-frequency radiation emitted by a quantum conductor presents a rising interest in quantum physics and condensed matter. However, its detection with microwave circuits is challenging. Here, we propose to use the photon-assisted shot noise for on-chip radiation detection. It is based on the low-frequency current noise generated by the partitioning of photon-excited electrons and holes, which are scattered inside the conductor. For a given electromagnetic coupling to the radiation, the photon-assisted shot noise response is shown to be independent on the nature and geometry of the quantum conductor used for the detection, up to a Fano factor, characterizing the type of scattering mechanism. Ordered in temperature or frequency range, from few tens of mK or GHz to several hundred of K or THz respectively, a wide variety of conductors can be used like Quantum Point Contacts (this work), diffusive metallic or semi-conducting films, graphene, carbon nanotubes and even molecule, opening new experimental opportunities in quantum physics.
- Published
- 2015
- Full Text
- View/download PDF
8. Quantum tomography of an electron
- Author
-
D. C. Glattli, T. Jullien, Antonella Cavanna, B. Roche, Yong Jin, Preden Roulleau, Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Groupe Nano-Electronique (GNE), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), and European Project: 228273,EC:FP7:ERC,ERC-2008-AdG,MEQUANO(2009)
- Subjects
Physics ,[PHYS]Physics [physics] ,Multidisciplinary ,Quantum sensor ,Quantum simulator ,02 engineering and technology ,Quantum tomography ,Quantum imaging ,021001 nanoscience & nanotechnology ,01 natural sciences ,Open quantum system ,Quantum error correction ,Quantum mechanics ,Quantum electrodynamics ,Quantum process ,0103 physical sciences ,Quantum information ,010306 general physics ,0210 nano-technology - Abstract
International audience; The complete knowledge of a quantum state allows the prediction of the probability of all possible measurement outcomes, a crucial step in quantum mechanics. It can be provided by tomographic methods which have been applied to atomic, molecular, spin and photonic states. For optical or microwave photons, standard tomogra-phy is obtained by mixing the unknown state with a large-amplitude coherent photon field. However, for fermions such as electrons in condensed matter, this approach is not applicable because fermionic fields are limited to small amplitudes (at most one particle per state), and so far no determination of an electron wavefunction has been made. Recent proposals involving quantum conductors suggest that the wavefunction can be obtained by measuring the time-dependent current of electronic wave interferometers or the current noise of electronic Hanbury-Brown/Twiss interferometers. Here we show that such measurements are possible despite the extreme noise sensitivity required, and present the reconstructed wavefunction quasi-probability, or Wigner distribution function, of single electrons injected into a ballistic conductor. Many identical electrons are prepared in well-controlled quantum states called levitons by repeatedly applying Lorentzian voltage pulses to a contact on the conductor. After passing through an electron beam splitter, the levitons are mixed with a weak-amplitude fermionic field formed by a coherent superposition of electron–hole pairs generated by a small alternating current with a frequency that is a multiple of the voltage pulse frequency 16. Antibunching of the electrons and holes with the levi-tons at the beam splitter changes the leviton partition statistics, and the noise variations provide the energy density matrix elements of the levitons. This demonstration of quantum tomography makes the developing field of electron quantum optics with ballistic conductors a new test-bed for quantum information with fermions. These results may find direct application in probing the entanglement of electron flying quantum bits, electron decoherence and electron interactions. They could also be applied to cold fermionic (or spin-1/2) atoms.
- Published
- 2014
- Full Text
- View/download PDF
9. Fractionalization of minimal excitations in integer quantum Hall edge channels
- Author
-
Preden Roulleau, D. C. Glattli, J. Dubois, Pascal Degiovanni, Charles Grenier, T. Jullien, Centre de Physique Théorique [Palaiseau] (CPHT), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique de l'ENS Lyon (Phys-ENS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon
- Subjects
Floquet theory ,Bosonization ,FOS: Physical sciences ,02 engineering and technology ,Electron ,Quantum Hall effect ,01 natural sciences ,Quantum mechanics ,quantum coherence ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,0103 physical sciences ,electron quantum optics ,010306 general physics ,quantum transport ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,Physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Scattering ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,3. Good health ,Electronic, Optical and Magnetic Materials ,Pair production ,73.23-b,73.43.-f,71.10.Pm, 73.43.Lp ,Quantum electrodynamics ,Quasiparticle ,quantum Hall e ffect ,0210 nano-technology ,Coherence (physics) - Abstract
A theoretical study of the single electron coherence properties of Lorentzian and rectangular pulses is presented. By combining bosonization and the Floquet scattering approach, the effect of interactions on a periodic source of voltage pulses is computed exactly. When such excitations are injected into one of the channels of a system of two copropagating quantum Hall edge channels, they fractionalize into pulses whose charge and shape reflects the properties of interactions. We show that the dependence of fractionalization induced electron/hole pair production in the pulses amplitude contains clear signatures of the fractionalization of the individual excitations. We propose an experimental setup combining a source of Lorentzian pulses and an Hanbury Brown and Twiss interferometer to measure interaction induced electron/hole pair production and more generally to reconstruct single electron coherence of these excitations before and after their fractionalization., 18 pages, 10 figures, 1 table
- Published
- 2013
- Full Text
- View/download PDF
10. Carrier drift velocity and edge magnetoplasmons in graphene
- Author
-
Patrice Roche, Keyan Bennaceur, Ivana Petkovic, D. C. Glattli, F. I. B. Williams, Fabien Portier, Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire National de Métrologie et d'Essais [Trappes] (LNE ), Research Institute for Solid State Physics and Optics [Budapest], Wigner Research Centre for Physics [Budapest], Hungarian Academy of Sciences (MTA)-Hungarian Academy of Sciences (MTA), MEQUANO (228273), and European Project: 228273,EC:FP7:ERC,ERC-2008-AdG,MEQUANO(2009)
- Subjects
Physics ,Drift velocity ,Characteristic length ,Condensed matter physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Graphene ,Wave packet ,General Physics and Astronomy ,FOS: Physical sciences ,Fermi energy ,Edge (geometry) ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,law ,Picosecond ,[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,0103 physical sciences ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Quasiparticle ,010306 general physics - Abstract
We investigate electron dynamics at the graphene edge by studying the propagation of collective edge magnetoplasmon (EMP) excitations. By timing the travel of narrow wave-packets on picosecond time scales around exfoliated samples, we find chiral propagation with low attenuation at a velocity which is quantized on Hall plateaus. We extract the carrier drift contribution from the EMP propagation and find it to be slightly less than the Fermi velocity, as expected for an abrupt edge. We also extract the characteristic length for Coulomb interaction at the edge and find it to be smaller than for soft, depletion edge systems., Comment: 5 pages, 3 figures of main text and 6 pages, 6 figures of supplemental material
- Published
- 2013
- Full Text
- View/download PDF
11. Minimal-excitation states for electron quantum optics using levitons
- Author
-
T. Jullien, Antonella Cavanna, Preden Roulleau, Werner Wegscheider, J. Dubois, Fabien Portier, Yong Jin, Patrice Roche, D. C. Glattli, Groupe Nano-Electronique (GNE), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), Solid State Physics Laboratory, Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), and European Project: 228273,EC:FP7:ERC,ERC-2008-AdG,MEQUANO(2009)
- Subjects
Physics ,Quantum optics ,[PHYS]Physics [physics] ,Multidisciplinary ,Fermi energy ,02 engineering and technology ,Electron ,Quantum Hall effect ,021001 nanoscience & nanotechnology ,01 natural sciences ,Quantum technology ,Quantum dot ,Quantum mechanics ,0103 physical sciences ,Quasiparticle ,Quantum information ,010306 general physics ,0210 nano-technology - Abstract
International audience; The on-demand generation of pure quantum excitations is important for the operation of quantum systems, but it is particularly difficult for a system of fermions. This is because any perturbation affects all states below the Fermi energy, resulting in a complex superposition of particle and hole excitations. However, it was predicted nearly 20 years ago1, 2, 3 that a Lorentzian time-dependent potential with quantized flux generates a minimal excitation with only one particle and no hole. Here we report that such quasiparticles (hereafter termed levitons) can be generated on demand in a conductor by applying voltage pulses to a contact. Partitioning the excitations with an electronic beam splitter generates a current noise that we use to measure their number. Minimal-excitation states are observed for Lorentzian pulses, whereas for other pulse shapes there are significant contributions from holes. Further identification of levitons is provided in the energy domain with shot-noise spectroscopy, and in the time domain with electronic Hong–Ou–Mandel noise correlations4, 5, 6, 7, 8. The latter, obtained by colliding synchronized levitons on a beam splitter, exemplifies the potential use of levitons for quantum information: using linear electron quantum optics9 in ballistic conductors, it is possible to imagine flying-qubit10, 11 operation in which the Fermi statistics are exploited12, 13, 14 to entangle synchronized electrons emitted by distinct sources15, 16, 17, 18. Compared with electron sources based on quantum dots19, 20, 21, the generation of levitons does not require delicate nanolithography, considerably simplifying the circuitry for scalability. Levitons are not limited to carrying a single charge, and so in a broader context n-particle levitons could find application in the study of full electron counting statistics22, 23, 24, 25. But they can also carry a fraction of charge if they are implemented in Luttinger liquids3 or in fractional quantum Hall edge channels26; this allows the study of Abelian and non-Abelian quasiparticles in the time domain. Finally, the generation technique could be applied to cold atomic gases27, 28, leading to the possibility of atomic levitons.
- Published
- 2013
- Full Text
- View/download PDF
12. Electron quantum optics: partitioning electrons one by one
- Author
-
Gwendal Fève, Jean-Marc Berroir, D. C. Glattli, Antonella Cavanna, Charles Grenier, Pascal Degiovanni, Bernard Plaçais, François Parmentier, Yong Jin, Erwann Bocquillon, Laboratoire Pierre Aigrain (LPA), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique de l'ENS Lyon (Phys-ENS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, and Berroir, Jean-Marc
- Subjects
Wave packet ,General Physics and Astronomy ,FOS: Physical sciences ,02 engineering and technology ,Electron ,7. Clean energy ,01 natural sciences ,law.invention ,law ,0103 physical sciences ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,Common emitter ,Quantum optics ,Physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Hanbury Brown and Twiss effect ,021001 nanoscience & nanotechnology ,[PHYS.COND.CM-MSQHE] Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,Splitter ,Atomic physics ,0210 nano-technology ,Beam splitter ,Fermi Gamma-ray Space Telescope - Abstract
We have realized a quantum optics like Hanbury Brown and Twiss (HBT) experiment by partitioning, on an electronic beam-splitter, single elementary electronic excitations produced one by one by an on-demand emitter. We show that the measurement of the output currents correlations in the HBT geometry provides a direct counting, at the single charge level, of the elementary excitations (electron/hole pairs) generated by the emitter at each cycle. We observe the antibunching of low energy excitations emitted by the source with thermal excitations of the Fermi sea already present in the input leads of the splitter, which suppresses their contribution to the partition noise. This effect is used to probe the energy distribution of the emitted wave-packets., 5 pages, 4 figures
- Published
- 2012
13. Current noise spectrum of a single-particle emitter: Theory and experiment
- Author
-
Mathias Albert, François Parmentier, Jean-Marc Berroir, Markus Büttiker, Christian Flindt, Gwendal Fève, D. C. Glattli, Erwann Bocquillon, Bernard Plaçais, Laboratoire Pierre Aigrain (LPA), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Département de Physique Théorique, Université de Genève = University of Geneva (UNIGE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), University of Geneva [Switzerland], and Berroir, Jean-Marc
- Subjects
Floquet theory ,Physics ,Mesoscopic physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Wave packet ,FOS: Physical sciences ,Semiclassical physics ,02 engineering and technology ,Quantum Hall effect ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Noise (electronics) ,Electronic, Optical and Magnetic Materials ,Computational physics ,[PHYS.COND.CM-MSQHE] Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,Quantum mechanics ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,0103 physical sciences ,Scattering theory ,010306 general physics ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,Common emitter - Abstract
The controlled and accurate emission of coherent electronic wave packets is of prime importance for future applications of nano-scale electronics. Here we present a theoretical and experimental analysis of the finite-frequency noise spectrum of a periodically driven single electron emitter. The electron source consists of a mesoscopic capacitor that emits single electrons and holes into a chiral edge state of a quantum Hall sample. We compare experimental results with two complementary theoretical descriptions: On one hand, the Floquet scattering theory which leads to accurate numerical results for the noise spectrum under all relevant operating conditions. On the other hand, a semi-classical model which enables us to develop an analytic description of the main sources of noise when the emitter is operated under optimal conditions. We find excellent agreement between experiment and theory. Importantly, the noise spectrum provides us with an accurate description and characterization of the mesoscopic capacitor when operated as a periodic single electron emitter., Comment: 17 pages, 15 figures
- Published
- 2012
14. Noise of a single electron emitter: experiment
- Author
-
François Parmentier, Antonella Cavanna, Jean-Marc Berroir, Gwendal Fève, D. C. Glattli, Bernard Plaçais, Yong Jin, Adrien Mahé, E. Bocquillon, Berroir, Jean-Marc, Laboratoire Pierre Aigrain (LPA), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Mesoscopic physics ,Noise measurement ,Astrophysics::High Energy Astrophysical Phenomena ,Electron ,01 natural sciences ,Noise (electronics) ,010305 fluids & plasmas ,[PHYS.COND.CM-MSQHE] Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,Quantum dot ,Quantum mechanics ,0103 physical sciences ,Physics::Accelerator Physics ,Atomic physics ,010306 general physics ,Quantum tunnelling ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,ComputingMilieux_MISCELLANEOUS ,Common emitter ,Electron gun - Abstract
We present here the experimental study of the short time correlations of the current fluctuations generated by a periodic single electron emitter. The electron emitter is a mesoscopic capacitor, a top gated quantum dot connected to a conductor via a tunable tunnel barrier. We observe a new fundamental noise for electrons which is associated with the quantum fluctuations of the electron emission time from one emission cycle to the other. This random jitter between the emission trigger and the single particle emission is related to the random nature of single particle tunneling and is intrinsic to any single particle emitter. When the emitter emits a single particle at each cycle with unit probability, the noise reduces to this fundamental jitter limit which demonstrates single particle emission.
- Published
- 2011
15. Conserved spin and orbital phase along carbon nanotubes connected with multiple ferromagnetic contacts
- Author
-
Jean-Marc Berroir, Audrey Cottet, Bernard Plaçais, Takis Kontos, Pascal Morfin, Thomas Delattre, Cheryl Feuillet-Palma, Gwendal Fève, D. C. Glattli, Laboratoire Pierre Aigrain (LPA), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
FOS: Physical sciences ,02 engineering and technology ,Carbon nanotube ,01 natural sciences ,7. Clean energy ,law.invention ,Condensed Matter::Materials Science ,law ,0103 physical sciences ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,010306 general physics ,Spin (physics) ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,Physics ,Spintronics ,Condensed matter physics ,Spin polarization ,Condensed Matter - Mesoscale and Nanoscale Physics ,Spin engineering ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Electronic, Optical and Magnetic Materials ,Spin Hall effect ,Spinplasmonics ,Condensed Matter::Strongly Correlated Electrons ,Quantum spin liquid ,0210 nano-technology - Abstract
We report on spin dependent transport measurements in carbon nanotubes based multi-terminal circuits. We observe a gate-controlled spin signal in non-local voltages and an anomalous conductance spin signal, which reveal that both the spin and the orbital phase can be conserved along carbon nanotubes with multiple ferromagnetic contacts. This paves the way for spintronics devices exploiting both these quantum mechanical degrees of freedom on the same footing., 8 pages - minor differences with published version
- Published
- 2010
- Full Text
- View/download PDF
16. Current correlations of an on-demand single-electron emitter
- Author
-
Yong Jin, Adrien Mahé, Gwendal Fève, D. C. Glattli, Takis Kontos, Jean-Marc Berroir, Erwann Bocquillon, Bernard Plaçais, François Parmentier, Antonella Cavanna, Berroir, Jean-Marc, Laboratoire Pierre Aigrain (LPA), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Quantum optics ,Physics ,Quantum limit ,Quantum sensor ,Quantum noise ,02 engineering and technology ,Quantum imaging ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Electronic, Optical and Magnetic Materials ,Computational physics ,[PHYS.COND.CM-MSQHE] Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,Quantum amplifier ,Open quantum system ,Quantum mechanics ,0103 physical sciences ,010306 general physics ,0210 nano-technology ,Quantum dissipation ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,ComputingMilieux_MISCELLANEOUS - Abstract
In analogy with quantum optics, short-time correlations of the current fluctuations are measured and used to assess the quality of the single-particle emission of a recently introduced on-demand electron source. We observe, in the context of electronics, the fundamental noise limit associated with the quantum fluctuations of the emission time of single particles, or quantum jittering. In optimum operating conditions of the source, the noise reduces to the quantum jitter limit, which demonstrates single-particle emission. Combined with the coherent manipulations of single electrons in a quantum conductor, this electron quantum optics experiment opens the way to explore new problems including quantum statistics and interactions at the single-electron level.
- Published
- 2010
17. Realization of a time-controlled sub nanosecond single electron source for ballistic qubits
- Author
-
Bernard Plaçais, Gwendal Fève, Takis Kontos, Adrien Mahé, Bernard Etienne, D. C. Glattli, Yong Jin, Antonella Cavanna, Jean-Marc Berroir, Laboratoire Pierre Aigrain (LPA), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), and Berroir, Jean-Marc
- Subjects
Physics ,Photon ,Quantum point contact ,Fermi energy ,02 engineering and technology ,Electron ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,7. Clean energy ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,[PHYS.COND.CM-MSQHE] Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,Tunnel effect ,Quantum dot ,Ballistic conduction ,Qubit ,0103 physical sciences ,Atomic physics ,010306 general physics ,0210 nano-technology ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] - Abstract
We report on the realization of a single electron source similar to single photon sources in optics providing an important brick for the implementation of flying quantum bits in ballistic conductors. On demand single electron injection is obtained using a quantum dot connected to the conductor via a tunnel barrier of variable transmission (quantum point contact). Electron emission is triggered by a sudden change of the dot potential which brings a single energy level above the Fermi energy in the conductor. A single charge is emitted on an average time ranging from 100 ps to 10 ns ultimately determined by the barrier transparency and the dot charging energy.
- Published
- 2008
- Full Text
- View/download PDF
18. Experimental Test of the High-Frequency Quantum Shot Noise Theory in a Quantum Point Contact
- Author
-
Fabien Portier, Yong Jin, J. Ségala, Eva Zakka-Bajjani, Patrice Roche, D. C. Glattli, Antonella Cavanna, Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de photonique et de nanostructures (LPN), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,High Frequency ,Condensed Matter - Mesoscale and Nanoscale Physics ,Quantum noise ,Quantum point contact ,Shot noise ,FOS: Physical sciences ,General Physics and Astronomy ,02 engineering and technology ,Photon energy ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,021001 nanoscience & nanotechnology ,01 natural sciences ,Noise generator ,Quantum mechanics ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,0103 physical sciences ,Quantum Point Contact ,Scattering theory ,Shot Noise ,010306 general physics ,0210 nano-technology ,Quantum ,Energy (signal processing) ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] - Abstract
We report on direct measurements of the electronic shot noise of a quantum point contact at frequencies nu in the range 4-8 GHz. The very small energy scale used ensures energy independent transmissions of the few transmitted electronic modes and their accurate knowledge. Both the thermal energy and the quantum point contact drain-source voltage Vds are comparable to the photon energy hnu leading to observation of the shot noise suppression when $V_{ds}, Comment: Version Published in Phys. Rev. Lett. (Phys. Rev. Lett. 99, 236803 (2007))
- Published
- 2007
- Full Text
- View/download PDF
19. The relaxation time of a chiral quantum R-L circuit
- Author
-
Bernard Etienne, Markus Büttiker, Yong Jin, Takis Kontos, Julien Gabelli, Bernard Plaçais, Jean-Marc Berroir, Gwendal Fève, D. C. Glattli, Laboratoire Pierre Aigrain (LPA), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), Département de Physique Théorique, Université de Genève = University of Geneva (UNIGE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), and University of Geneva [Switzerland]
- Subjects
Admittance ,Quantum point contact ,General Physics and Astronomy ,FOS: Physical sciences ,Carrier relaxation time ,02 engineering and technology ,Electron ,ddc:500.2 ,Quantum Hall effect ,01 natural sciences ,Ballistic conduction ,0103 physical sciences ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Inductors ,010306 general physics ,Quantum ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,Physics ,Condensed matter physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Resistors ,Charge (physics) ,Quantum point contacts ,021001 nanoscience & nanotechnology ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Conductors (electric) ,RLC circuits ,Scattering theory ,0210 nano-technology - Abstract
We report on the GHz complex admittance of a chiral one-dimensional ballistic conductor formed by edge states in the quantum Hall regime. The circuit consists of a wide Hall bar (the inductor L) in series with a tunable resistor (R) formed by a quantum point contact. Electron interactions between edges are screened by a pair of side gates. Conductance steps are observed on both real and imaginary parts of the admittance. Remarkably, the phase of the admittance is transmission independent. This shows that the relaxation time of a chiral R -L circuit is resistance independent. A current and charge conserving scattering theory is presented that accounts for this observation with a relaxation time given by the electronic transit time in the circuit.
- Published
- 2007
- Full Text
- View/download PDF
20. Cotunneling and one-dimensional localization in individual disordered single-wall carbon nanotubes: Temperature dependence of the intrinsic resistance
- Author
-
Bo Gao, Adrian Bachtold, Bernard Plaçais, D. C. Glattli, Laboratoire Pierre Aigrain (LPA), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Coulomb blockade ,Carbon nanotubes ,02 engineering and technology ,Activation energy ,Carbon nanotube ,01 natural sciences ,law.invention ,Tunnelling ,Hopping conduction ,law ,Electrical resistivity and conductivity ,0103 physical sciences ,010306 general physics ,Quantum tunnelling ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,73.63.Fg, 73.20.Fz, 73.23.Hk ,Condensed matter physics ,Quantum dots ,Electrical resistivity ,Charge (physics) ,Atmospheric temperature range ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,3. Good health ,Electronic, Optical and Magnetic Materials ,Quantum dot ,Kink bands ,0210 nano-technology - Abstract
5 pages, 4 figures.-- PACS nrs.: 73.63.Fg; 73.20.Fz; 73.23.Hk.-- ArXiv pre-print available at: http://arxiv.org/abs/cond-mat/0606473, We report on the temperature dependence of the intrinsic resistance of long individual disordered single-wall carbon nanotubes. The resistance grows dramatically as the temperature is reduced, and the functional form is consistent with an activated behavior. These results are described by a Coulomb blockade along a series of quantum dots. We occasionally observe a kink in the activated behavior that reflects the change of the activation energy as the temperature range is changed. This is attributed to charge hopping events between nonadjacent quantum dots, which is possible through cotunneling processes., LPA is CNRS-UMR8551 associated with Paris 6 and 7. The research has been supported by ACN, Sesame.
- Published
- 2006
- Full Text
- View/download PDF
21. Four-point resistance of individual single-wall carbon nanotubes
- Author
-
Adrian Bachtold, D. C. Glattli, Michael S. Fuhrer, Yng-Gwei Chen, Bo Gao, Berroir, Jean-Marc, Laboratoire Pierre Aigrain (LPA), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Department of Physics and Center for Superconductivity Research, University of Maryland [College Park], University of Maryland System-University of Maryland System, Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), and National Science Foundation (US)
- Subjects
Materials science ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,General Physics and Astronomy ,02 engineering and technology ,Carbon nanotube ,7. Clean energy ,01 natural sciences ,law.invention ,[PACS] Relaxation times and mean free paths ,Condensed Matter::Materials Science ,[PACS] Fullerenes and related materials ,Electrical resistivity and conductivity ,law ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,0103 physical sciences ,Composite material ,010306 general physics ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed matter physics ,Coulomb blockade ,[PACS] Electronic transport in mesoscopic systems ,021001 nanoscience & nanotechnology ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,3. Good health ,[PHYS.COND.CM-MSQHE] Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,[PACS] Nanotubes ,Electrode ,Current (fluid) ,Resistor ,0210 nano-technology ,Voltage drop ,Voltage - Abstract
4 pages, 5 figures.-- PACS nrs.: 73.63.Fg, 72.15.Lh, 72.80.Rj, 73.23.−b.-- ArXiv pre-print available at: http://arxiv.org/abs/cond-mat/0505041, We have studied the resistance of single-wall carbon nanotubes measured in a four-point configuration with noninvasive voltage electrodes. The voltage drop is detected using multiwalled carbon nanotubes while the current is injected through nanofabricated Au electrodes. The resistance at room temperature is shown to be linear with the length as expected for a classical resistor. This changes at cryogenic temperature; the four-point resistance then depends on the resistance at the Au-tube interfaces and can even become negative due to quantum-interference effects., The research in Paris has been supported by ACN, Sesame. Y. F. C. and M. S. F. acknowledge support from the U.S. National Science Foundation through Grant No. DMR- 0102950. LPA is CNRS-UMR8551 associated with Paris 6 and 7.
- Published
- 2006
22. A quantum mesoscopic RC circuit realized in a 2D electron gas
- Author
-
Jean-Marc Berroir, Bernard Plaçais, Gwendal Fève, D. C. Glattli, Bernard Etienne, Julien Gabelli, Yong Jin, Berroir, Jean-Marc, Laboratoire Pierre Aigrain (LPA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Mesoscopic physics ,Condensed matter physics ,Landauer formula ,02 engineering and technology ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Capacitance ,Atomic and Molecular Physics, and Optics ,3. Good health ,Electronic, Optical and Magnetic Materials ,[PHYS.COND.CM-MSQHE] Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,Quantum mechanics ,0103 physical sciences ,72.10.Bg ,72.30.+q ,Scattering theory ,010306 general physics ,0210 nano-technology ,Fermi gas ,RC circuit ,Constant (mathematics) ,Quantum ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] - Abstract
The quantum resistance and capacitance of a mesoscopic RC circuit made of a small dot connected to a lead by a QPC realized in a 2DEG are measured for the first time. Contrary to what can be naively expected, in the coherent regime the resistance is not given by the Landauer formula but is nearly constant and is found to be close to half the resistance according to Buttiker's AC quantum scattering theory.
- Published
- 2005
- Full Text
- View/download PDF
23. Hanbury Brown–Twiss noise correlations to probe the Statistics of GHz Photons emitted by quantum conductors
- Author
-
Jean-Marc Berroir, Patrice Roche, L.-H. Reydellet, Bernard Plaçais, Julien Gabelli, Gwendal Fève, D. C. Glattli, Laboratoire Pierre Aigrain (LPA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), T. Gonzales, J. Mateos, D. Pardo, Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Quantum optics ,[PHYS]Physics [physics] ,Noise power ,Photon ,Noise measurement ,business.industry ,Quantum noise ,Hanbury Brown and Twiss effect ,Shot noise ,020206 networking & telecommunications ,02 engineering and technology ,7. Clean energy ,Noise (electronics) ,Optics ,Statistics ,0202 electrical engineering, electronic engineering, information engineering ,020201 artificial intelligence & image processing ,business - Abstract
In microwave current noise power measurements, a detector is used which measures the power emitted by the device in the external circuit. This power can be viewed as a flux of (microwave) photons. An interesting question is the nature of the photon statistics associated with the noise power. While for thermal noise one expects classical photon statistics (Bose-Einstein), recently it has been shown theoretically that shot noise may lead to non-classical photon statistics. We propose an original cryogenic experimental scheme to characterize the statistics of photons emitted by conductors at GHz frequency. The experiments, a microwave analog of optical Hanbury Brown Twiss photon correlations, is able to distinguish the statistics of the black-body radiation associated with thermal electronic noise from the statistics of a coherent monochromatic microwave source. The experiments displays the sensitivity required for future investigations of non classical photons emitted by quantum conductors.
- Published
- 2005
- Full Text
- View/download PDF
24. Fano factor reduction on the 0.7 conductance structure of a ballistic one-dimensional wire
- Author
-
J. T. Nicholls, Michelle Y. Simmons, David A. Ritchie, Patrice Roche, Michael Pepper, D. C. Glattli, Kalarikad Thomas, A. C. Graham, and J. Ségala
- Subjects
Physics ,QUANTUM POINT CONTACTS ,Fano factor ,Research Groups and Centres\Physics\Low Temperature Physics ,Condensed matter physics ,Faculty of Science\Physics ,Shot noise ,General Physics and Astronomy ,Conductance ,ELECTRON-GAS ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Thermal conduction ,01 natural sciences ,Magnetic field ,Electrical resistivity and conductivity ,SCATTERING-THEORY ,Ballistic conduction ,0103 physical sciences ,010306 general physics ,0210 nano-technology ,Fermi gas ,SHOT-NOISE - Abstract
We have measured the nonequilibrium current noise in a ballistic one-dimensional wire which exhibits an additional conductance plateau at 0.7x2e(2)/h. The Fano factor shows a clear reduction on the 0.7 structure, and eventually vanishes upon applying a strong parallel magnetic field. These results provide experimental evidence that the 0.7 structure is associated with two conduction channels that have different transmission probabilities.
- Published
- 2004
- Full Text
- View/download PDF
25. Hanbury-Brown Twiss correlations to probe the population statistics of GHz photons emitted by conductors
- Author
-
Gwendal Fève, D. C. Glattli, L.-H. Reydellet, Bernard Plaçais, Jean-Marc Berroir, Julien Gabelli, Patrice Roche, Laboratoire Pierre Aigrain (LPA), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Photon ,General Physics and Astronomy ,Physics::Optics ,FOS: Physical sciences ,02 engineering and technology ,Electron ,7. Clean energy ,01 natural sciences ,law.invention ,Nuclear physics ,Generator (circuit theory) ,law ,quantum conductor ,Quantum mechanics ,0103 physical sciences ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,010306 general physics ,Quantum ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,Physics ,Photon antibunching ,photon statistics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Hanbury Brown and Twiss effect ,73.23.-b,73.50.Td,42.50.-p,42.50.Ar ,021001 nanoscience & nanotechnology ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,MilliKelvin GigaHertz photon correlations ,Radio frequency ,Resistor ,0210 nano-technology - Abstract
We present the first study of the statistics of GHz photons in quantum circuits, using Hanbury-Brown and Twiss correlations. The superpoissonian and poissonian photon statistics of thermal and coherent sources respectively made of a resistor and a radiofrequency generator are measured down to the quantum regime at milliKelvin temperatures. As photon correlations are linked to the second and fourth moments of current fluctuations, this experiment, which is based on current cryogenic electronics, may become a standard for probing electron/photon statistics in quantum conductors, Comment: soumis le 22 mars 2004
- Published
- 2004
26. Geometrical Dependence of High-Bias Current in Multiwalled Carbon Nanotubes
- Author
-
B. Bourlon, László Forró, Jean-Marc Berroir, C. Miko, Bernard Plaçais, Adrian Bachtold, D. C. Glattli, Laboratoire Pierre Aigrain (LPA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and Berroir, Jean-Marc
- Subjects
Nanotube ,Materials science ,Condensed matter physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Zener tunneling ,Shell (structure) ,General Physics and Astronomy ,FOS: Physical sciences ,Biasing ,Nanotechnology ,02 engineering and technology ,Scattering process ,021001 nanoscience & nanotechnology ,Multiwalled carbon ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,01 natural sciences ,[PHYS.COND.CM-MSQHE] Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,Condensed Matter::Materials Science ,0103 physical sciences ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Current (fluid) ,010306 general physics ,0210 nano-technology ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] - Abstract
We have studied the high-bias transport properties of the different shells that constitute a multiwalled carbon nanotube. The current is shown to be reduced as the shell diameter is decreased or the length is increased. We assign this geometrical dependence to the competition between electron-phonon scattering process and Zener tunneling., 4 pages, 4 figures
- Published
- 2003
27. Quantum partition noise of photo-created electron-hole pairs
- Author
-
Bernard Etienne, L.-H. Reydellet, Patrice Roche, D. C. Glattli, Yun Jin, Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de photonique et de nanostructures (LPN), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Fano factor ,Noise temperature ,Noise spectral density ,Quantum point contact ,Quantum noise ,Condensed Matter (cond-mat) ,Shot noise ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,General Physics and Astronomy ,FOS: Physical sciences ,02 engineering and technology ,Condensed Matter ,021001 nanoscience & nanotechnology ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,01 natural sciences ,Computational physics ,Burst noise ,Noise generator ,Quantum mechanics ,[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,0103 physical sciences ,010306 general physics ,0210 nano-technology - Abstract
We show experimentally that even when no bias voltage is applied to a quantum conductor, the electronic quantum partition noise can be investigated using GHz radiofrequency irradiation of a reservoir. Using a Quantum Point Contact configuration as the ballistic conductor we are able to make an accurate determination of the partition noise Fano factor resulting from the photo-assisted shot noise. Applying both voltage bias and rf irradiation we are able to make a definitive quantitative test of the scattering theory of photo-assisted shot noise., Comment: 4 pages, 4 figures
- Published
- 2003
28. Enhanced shot noise in long quasi-diffusive S-N-S junctions
- Author
-
Tatsushi Akazaki, Hideaki Takayanagi, Patrice Roche, Hélène Perrin, D. C. Glattli, Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), NTT Basic Research Laboratories [Atsugi], and NTT Corporation
- Subjects
Band gap ,Niobium ,Incoherent scatter ,Energy Engineering and Power Technology ,chemistry.chemical_element ,S–N–S junction ,02 engineering and technology ,74.50.+r ,74.20.Fg ,74.80.Fp ,01 natural sciences ,Andreev reflection ,Condensed Matter::Superconductivity ,0103 physical sciences ,Electrical and Electronic Engineering ,010306 general physics ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,Superconductivity ,Physics ,Condensed matter physics ,Shot noise ,Heterojunction ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,2D electron gas ,Electronic, Optical and Magnetic Materials ,chemistry ,0210 nano-technology ,Fermi gas ,InAlAs/InGaAs - Abstract
International audience; We present shot noise measurements on superconducting–normal–superconducting junction (S–N–S) where the superconductor is Niobium and the normal conductor is a two-dimensional electron gas in a InAlAs/InGaAs heterojunction. The aim of the measurements was to check the recent predictions [Phys. Rev. Lett. 83 (1999) 2050] that in the limit of incoherent multiple Andreev reflection (I-MAR), i.e. in the elastic regime for Thouless energy much lower than the superconducting gap, the current–voltage characteristics should be quasi-linear but I-MAR could be detected in the shot noise.
- Published
- 2001
- Full Text
- View/download PDF
29. Shot noise and the Luttinger liquid-like properties of the FQHE
- Author
-
V. Rodriguez, D. C. Glattli, Hélène Perrin, Patrice Roche, Yong Jin, Bernard Etienne, Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Microstructures et de Microélectronique (L2M), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Noise power ,Condensed matter physics ,73.40-Hm ,Hm 71.10 ,Pm 72.20.My ,Quantum noise ,Quantum point contact ,Shot noise ,02 engineering and technology ,Quantum Hall effect ,Luttinger liquids ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,01 natural sciences ,Noise (electronics) ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,Luttinger liquid ,0103 physical sciences ,Fractional quantum Hall effect ,010306 general physics ,0210 nano-technology ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] - Abstract
International audience; We present shot noise measurements in the Fractional Quantum Hall regime at . The two fractional edge channels which carry the current at the two opposite boundaries of a quantum Hall sample are weakly coupled by an artificial impurity, namely a Quantum Point Contact. This coupling gives rise to a current between the two edge channels and the random transfer of the charges gives rise to fluctuations of the current. For a weak coupling and for large voltages, recent experiments have established that the current noise power SI is proportional to the backscattered current IB and to the fractional charge e/3. For low voltages at low temperature, the chiral Luttinger liquid models suggest a renormalization of the coupling strength leading to strong backscattering even when the bare coupling is weak. These models predict a noise power proportional to the transmitted current I and to the electronic charge e. The new noise measurements presented here confirm the shot noise predictions at moderately low temperatures. However, at very low temperature, measurements show a surprising enhancement of the shot noise which is nearly doubled.
- Published
- 2000
- Full Text
- View/download PDF
30. Observation of the e/3 Fractionally Charged Laughlin Quasiparticles
- Author
-
Laurent Saminadayar, D. C. Glattli, Bernard Etienne, and Yong Jin
- Subjects
Physics ,Condensed matter physics ,Filling factor ,Condensed Matter (cond-mat) ,Shot noise ,General Physics and Astronomy ,FOS: Physical sciences ,Charge (physics) ,Landau quantization ,Condensed Matter ,Quantum Hall effect ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Quantum mechanics ,Quasiparticle ,Quantum tunnelling ,Noise (radio) - Abstract
The existence of fractional charges carrying the current is experimentally demonstrated. Using a 2-D electron system in high magnetic field, we measure the shot noise associated with tunneling in the fractional quantum Hall regime at Landau level filling factor 1/3. The noise gives a direct determination of the quasiparticle charge, which is found to be e*=e/3 as predicted by Laughlin. The existence of e/3 Laughlin quasiparticles is unambiguously confirmed by the shot noise to Johnson-Nyquist noise cross-over found for temperature e*V/2k., 4 pages, 4 figures, to appear in Phys. Rev. Lett. (accepted August 22)
- Published
- 1997
31. Single Carbon Nanotube Transistor at GHz Frequency.
- Author
-
J. Chaste, L. Lechner, P. Morfin, G. Fève, T. Kontos, J.-M., Berroir, D. C. Glattli, H. Happy, P. Hakonen, and B. Plaçais
- Published
- 2008
- Full Text
- View/download PDF
32. Beyond the linearity of current-voltage characteristics in multiwalled carbon nanotubes.
- Author
-
B Bourlon, C Miko, L Forr, D C Glattli, and A Bachtold
- Subjects
NANOTUBES ,ELECTRON transport ,ELECTRIC potential ,ELECTRIC currents - Abstract
We present local and non-local electron transport measurements on individual multi-wall nanotubes for bias voltages between 0 and about 4 V. Local current-voltage characteristics are quite linear. In contrast, non-local measurements are highly nonlinear; the differential non-local conductance can even become negative in the high-bias regime. We discuss the relationship between these results and transport parameters such as the elastic length, the number of current carrying shells and the number of conducting modes. [ABSTRACT FROM AUTHOR]
- Published
- 2006
- Full Text
- View/download PDF
33. Scaling behavior of electron decoherence in a graphene Mach-Zehnder interferometer
- Author
-
M. Jo, June-Young M. Lee, A. Assouline, P. Brasseur, K. Watanabe, T. Taniguchi, P. Roche, D. C. Glattli, N. Kumada, F. D. Parmentier, H. -S. Sim, P. Roulleau, Service de physique de l'état condensé (SPEC - UMR3680), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Multidisciplinary ,General Physics and Astronomy ,General Chemistry ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,General Biochemistry, Genetics and Molecular Biology - Abstract
Over the past 20 years, many efforts have been made to understand and control decoherence in 2D electron systems. In particular, several types of electronic interferometers have been considered in GaAs heterostructures, in order to protect the interfering electrons from decoherence. Nevertheless, it is now understood that several intrinsic decoherence sources fundamentally limit more advanced quantum manipulations. Here, we show that graphene offers a unique possibility to reach a regime where the decoherence is frozen and to study unexplored regimes of electron interferometry. We probe the decoherence of electron channels in a graphene quantum Hall PN junction, forming a Mach-Zehnder interferometer1,2, and unveil a scaling behavior of decay of the interference visibility with the temperature scaled by the interferometer length. It exhibits a remarkable crossover from an exponential decay at higher temperature to an algebraic decay at lower temperature where almost no decoherence occurs, a regime previously unobserved in GaAs interferometers.
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.