Dennis C. Reuter, Bernard Schmitt, Stephen C. Tegler, Anne J. Verbiscer, Harold A. Weaver, Cristina M. Dalle Ore, Jennifer Hanley, Kelsi N. Singer, Kimberly Ennico, Gerrick E. Lindberg, Fatima Alketbi, John Stansberry, S. Philippe, Donald E. Jennings, Richard P. Binzel, Catherine B. Olkin, Logan A. Pearce, Allen W. Lunsford, Carly Howett, Alissa M. Earle, Garrett Thompson, Alex Parker, S. Alan Stern, Jason C. Cook, Silvia Protopapa, Dale P. Cruikshank, William M. Grundy, Leslie A. Young, Southwest Research Institute [Boulder] (SwRI), Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), NASA Goddard Space Flight Center (GSFC), Centre Hospitalier de l'Université de Montréal (CHUM), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Steward observatory, University of Arizona, Department of Space Studies [Boulder], Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Pinhead Institute, NASA Ames Research Center (ARC), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Montréal (UdeM), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and Centre National d'Etudes Spatiales (CNES)
International audience; On July 14, 2015, the New Horizons spacecraft made its closest approach to Pluto at about 12,000 km from its surface (Stern et al., 2015). Using the LEISA (Linear Etalon Imaging Spectral Array) near-IR imaging spectrometer we obtained two scans across the encounter hemisphere of Pluto at 6-7 km/pixel resolution. By correlating each spectrum with a crystalline H 2 O-ice model, we find several sites on Pluto's surface that exhibit the 1.5, 1.65 and 2.0 µm absorption bands characteristic of H 2 O-ice in the crystalline phase. These sites tend to be isolated and small (≲ 5000 km 2 per site). We note a distinct near-IR blue slope over the LEISA wavelength range and asymmetries in the shape of the 2.0 µm H 2 O-ice band in spectra with weak CH 4-ice bands and strong H 2 O-ice bands. These characteristics are indicative of fine-grain (grain diameters < wavelength or ∼ 1 µm) H 2 O-ice, like that seen in the spectra of Saturnian rings and satellites. However, the best-fit Hapke models require small mass fractions (≲10 −3) of fine-grained H 2 O-ice that we can exchange for other refractory materials in the models with little change in χ 2 , which may mean that the observed blue slope is possibly not due to a fine-grained material but an unidentified material with a similar spectral characteristic. We use these spectra to test for the presence of amorphous H 2 O-ice and estimate crystalline-to-amorphous H 2 O-ice fractions between 30 and 100%, depending on the location. We also see evidence for heavy hydrocarbons via strong absorption at λ > 2.3 µm. Such heavy hydrocarbons are much less volatile than N 2 , CH 4 , and CO at Pluto temperatures. We test for CH 3 OH, C 2 H 6 , C 2 H 4 , and C 3 H 8-ices because they have known optical constants and these ices are likely to arise from UV and energetic particle bombardment of the N 2 , CH 4 , CO-rich surface and atmosphere. Finally, we attempt to estimate the surface temperature using optical constants of pure CH 4 , and H 2 O-ice and best-fit Hapke models. Our standard model gives temperature estimates between 40 and 90 K, while our models including amorphous H 2 O-ice give lower temperature estimates between 30 and 65 K.