1. Substrate specificity, regiospecificity, and processivity in glycoside hydrolase family 74
- Author
-
Mohamed A. Attia, Jathavan Asohan, Alexei Savchenko, Gregory Arnal, Peter J. Stogios, Harry Brumer, Bernard Henrissat, Tatiana Skarina, Alexander Holm Viborg, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Recherche Agronomique (INRA), Department of Biochemistry [University of Toronto], University of Toronto, University of British Columbia (UBC), Croissance cellulaire, réparation et régénération tissulaires (CRRET), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Architecture et fonction des macromolécules biologiques (AFMB), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), United States Department of Energy, Office of Biological and Environmental ResearchUnited States Department of Energy (DOE) [DE-AC02-06CH11357], Savchenko, Alexei, Brumer, Harry, Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), and Institut National des Sciences Appliquées (INSA)-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées (INSA)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Models, Molecular ,0301 basic medicine ,enzyme structure-function relationships cellulase ,Glycoside Hydrolases ,enzyme evolution ,Protein Conformation ,[SDV]Life Sciences [q-bio] ,Context (language use) ,xyloglucanase ,Crystallography, X-Ray ,Biochemistry ,Substrate Specificity ,carbohydrate-active enzymes (CAZymes) ,03 medical and health sciences ,chemistry.chemical_compound ,xyloglucan ,glycobiology ,Phylogenetics ,Hydrolase ,plant cell wall ,Editors' Picks ,Glycoside hydrolase ,carbohydrate metabolism ,Mode of action ,protein evolution ,Molecular Biology ,molecular phylogeny ,X-ray crystallography ,Bacteria ,030102 biochemistry & molecular biology ,glycoside hydrolase family 74 (GH74) ,Fungi ,Stereoisomerism ,Cell Biology ,Processivity ,hemicellulose ,Xyloglucan ,phylogenetics ,Kinetics ,polysaccharide ,glycosidase ,processivity ,structure-function ,enzyme structure-function relationships ,cellulase ,030104 developmental biology ,chemistry ,Structural biology ,processivity structure-function ,Biocatalysis - Abstract
International audience; Glycoside hydrolase family 74 (GH74) is a historically important family of endo--glucanases. On the basis of early reports of detectable activity on cellulose and soluble cellulose derivatives, GH74 was originally considered to be a "cellulase" family, although more recent studies have generally indicated a high specificity toward the ubiquitous plant cell wall matrix glycan xyloglucan. Previous studies have indicated that GH74 xyloglu-canases differ in backbone cleavage regiospecificities and can adopt three distinct hydrolytic modes of action: exo, endo-dis-sociative, and endo-processive. To improve functional predictions within GH74, here we coupled in-depth biochemical characterization of 17 recombinant proteins with structural biology-based investigations in the context of a comprehensive molecular phylogeny, including all previously characterized family members. Elucidation of four new GH74 tertiary structures , as well as one distantly related dual seven-bladed -propeller protein from a marine bacterium, highlighted key structure-function relationships along protein evolutionary trajectories. We could define five phylogenetic groups, which delineated the mode of action and the regiospecificity of GH74 members. At the extremes, a major group of enzymes diverged to hydrolyze the backbone of xyloglucan nonspecifically with a dissociative mode of action and relaxed backbone regiospecific-ity. In contrast, a sister group of GH74 enzymes has evolved a large hydrophobic platform comprising 10 subsites, which facilitates processivity. Overall, the findings of our study refine our understanding of catalysis in GH74, providing a framework for future experimentation as well as for bioinformatics predictions of sequences emerging from (meta)genomic studies.
- Published
- 2019