1. Espaces de Banach-Colmez et faisceaux coh\'erents sur la courbe de Fargues-Fontaine
- Author
-
Arthur-César Le Bras, Laboratoire Analyse, Géométrie et Applications (LAGA), and Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord
- Subjects
Pure mathematics ,Derived category ,14G22 ,Mathematics - Number Theory ,General Mathematics ,Mathematics::Number Theory ,010102 general mathematics ,perfectoid spaces ,Banach-Colmez spaces ,01 natural sciences ,Cohomology ,14F30 ,Coherent sheaf ,Fargues-Fontaine curve ,Mathematics - Algebraic Geometry ,Mathematics::Category Theory ,0103 physical sciences ,Affine space ,010307 mathematical physics ,Abelian category ,p-adic Hodge theory ,0101 mathematics ,proétale cohomology ,[MATH]Mathematics [math] ,Mathematics - Abstract
We give a new definition, simpler but equivalent, of the abelian category of Banach-Colmez spaces introduced by Colmez, and we explain the precise relationship with the category of coherent sheaves on the Fargues-Fontaine curve. One goes from one category to the other by changing the t-structure on the derived category. Along the way, we obtain a description of the pro-\'etale cohomology of the open disk and the affine space, of independent interest., Comment: In French, comments welcome !
- Published
- 2018
- Full Text
- View/download PDF