1. Super-resolution microscopy elucidates the stoichiometry of plant membrane proteins
- Author
-
Lehmann, Julian
- Subjects
Fluoreszenzmikroskopie ,Oligomerisation ,ddc:575 ,Membranproteine - Abstract
SLAC/SLAH Anionenkanäle, die zur Familie der langsamen Anionenkanäle gehören, repräsentieren Schlüsselproteine in der pflanzlichen Stressantwort. Neben ihrer Aufgabe in Stresssituationen, ist eine Untergruppe der Kanäle für die Beladung der Leitgefäße mit Nitrat und Chlorid in der Stele der Pflanzenwurzeln verantwortlich. Biophysikalische und pflanzenphysiologische Studien stellten heraus, dass vor Allem der Anionenkanal SLAH3 für die Beladung der Xylem Leitgefäße mit Nitrat und Chlorid verantwortlich ist. Ihm zur Seite gestellt werden noch die elektrisch inaktiven Homologe SLAH1 und SLAH4 in der Wurzel exprimiert. Sie steuern die Aktivität von SLAH3 durch die Assemblierung zu SLAH1/SLAH3 oder SLAH3/SLAH4 Heteromeren. Neben der Kontrolle durch Heteromerisierungsereignisse, werden SLAH3 Homomere sehr spezifisch und schnell durch zytosolische Ansäuerung aktiviert. Obwohl bereits die Kristallstruktur des bakteriellen Homologs HiTehA zu pflanzlichen SLAC/SLAH Anionenkanälen bekannt ist, welche HiTehA als Trimer charakterisiert, sind die Stöchiometrie und der Polymerisierungsgrad der pflanzlichen SLAC/SLAHs bisher noch unbekannt. Die Fluoreszenzmikroskopie umfasst viele etablierte Anwendungsmethoden, wie die konfokale Laserrastermikroskopie (CLSM), Techniken mit verbesserter Auflösung, wie die Mikroskopie mit strukturierter Beleuchtung (SIM) und hochauflösende Methoden, welche durch die Lokalisationsmikroskopie (z.B. dSTORM und PALM) oder die Expansionsmikroskopie (ExM) vertreten werden. Diese unterschiedlichen Mikroskopie-methoden ermöglichen neue Einblicke in die Organisation von Proteinen in biologischen Systemen, die bis auf die molekulare Ebene hinunterreichen. Insbesondere im Bereich der hochauflösenden Fluoreszenzmikroskopie sind im Gegensatz zu tierischen Frage-stellungen bisher jedoch nur wenige Untersuchungen in pflanzlichen Geweben durchgeführt worden. Die Lokalisationsmikroskopie ermöglicht die Quantifizierung einzelner Moleküle in nativen Systemen und lässt überdies Rückschlüsse auf den Polymerisierungsgrad von Proteinen zu. Da Poly- und Heteromerisierung von Proteinen oftmals mit der Funktionalität eines entsprechenden Proteins einhergeht, wie es bei den SLAC/SLAH Anionenkanälen der Fall ist, wurden in dieser Arbeit PALM Messungen zur Untersuchung des Polymerisierungsgrades und Interaktionsmuster der Anionenkanäle angewendet. Ferner wurden Expressionsmuster der SLAC/SLAHs untersucht und zudem Mikroskopieanwendungen im Pflanzengewebe etabliert und verbessert. In Bezug auf die Mikroskopieanwendungen konnten wir in Arabidopsis thaliana (At) Wurzeln die polare Verteilung von PIN Proteinen mittels SIM bestätigen und die gruppierte Verteilung in der Plasmamembran am Zellpol auflösen. In Wurzel-querschnitten war es möglich, Zellwände zu vermessen, den Aufbau der Pflanzenwurzel mit den verschiedenen Zelltypen zu rekonstruieren und diesen in Zusammenhang mit Zellwanddicken zu bringen. Anhand dieser Aufnahmen ließ sich die Auflösungsgrenze eines SIM-Mikroskops bestimmen, weshalb diese Probe als Modellstruktur für Auflösungsanalysen, zur Kontrolle für die korrekte Bildverarbeitung bei hochauflösender Bildgebung und andere Fragestellungen empfohlen werden kann. Für die Expansionsmikroskopie in pflanzlichen Proben konnten ein enzym- und ein denaturierungsbasiertes Präparationsprotokoll etabliert werden. Dabei wurden ganze At Setzlinge, Wurzelabschnitte und Blattstücke gefärbt, expandiert und mit zwei bis drei Mal verbesserter Auflösung bildlich dargestellt. In diesem Zusammenhang waren Aufnahmen ganzer Wurzel- und Blattproben mit beeindruckender Eindringtiefe und extrem geringem Hintergrundsignal möglich. Zudem wurden die Daten kritisch betrachtet, Probleme aufgezeigt, gewebespezifische Veränderungen dargestellt und limitierende Faktoren für die ExM in Pflanzenproben thematisiert. Im Fokus dieser Arbeit stand die Untersuchung der SLAC/SLAH Proteine. SLAH2 wird in den Wurzeln vornehmlich in Endodermis- und Perizykelzellen exprimiert, was anhand verschiedener At SLAH2 YFP Mutanten untersucht werden konnte. Dies unterstützt die Annahme, dass SLAH2 bei der Beladung der Leitgefäße mit Nitrat maßgeblich beteiligt ist. Es ist denkbar, dass SLAH2 ebenfalls eine wachstumsbeeinflussende Funktion über die Regulation von Nitratkonzentrationen zugeschrieben werden kann. Darauf deuten vor allem die verstärkte Expression von SLAH2 im Bereich der Seitenwurzeln und die heterogene Expression in der Elongations-, Differenzierungs- und meristematischen Zone hin. Die Membranständigkeit von SLAH4 konnte nachgewiesen werden und FRET FLIM Untersuchungen zeigten eine hohe Affinität von SLAH4 zu SLAH3, was die beiden Homologe als Interaktionspartner identifiziert. Für die Bestimmung des Oligomerisierungsgrades mittels PALM wurden die pflanzlichen Anionenkanäle in tierischen COS7-Zellen exprimiert. Die elektrophysiologische Funktionalität der mEOS2-SLAC/SLAH-Konstrukte wurde mit Hilfe von Patch-Clamp-Versuchen in COS7-Zellen überprüft. Um Expressionslevel, Membranständigkeit und die Verteilung über die Membran der SLAC/SLAHs zu verifizieren, wurden dSTORM-Aufnahmen herangezogen Schließlich ermöglichten PALM-Aufnahmen die Bestimmung des Polymerisierungs-grades der SLAC/SLAH Anionenkanäle, die stöchiometrischen Veränderungen bei Heteromerisierung von SLAH3 mit SLAH1 oder SLAH4 und auch der Einfluss einer zytosolischer Ansäuerung auf den Polymerisierungsgrad von SLAH3 Homomeren. Zudem weisen die Oligomerisierungsanalysen von SLAH3 Mutanten darauf hin, dass die Aminosäuren Histidin His330 und His454 entscheidend an der pH sensitiven Regulierung von SLAH3 beteiligt sind. Durch die erhobenen Daten konnten also entscheidende, neue Erkenntnisse über die Regulationsmechanismen von pflanzlichen Anionenkanälen auf molekularer Ebene gewonnen werden: Unter Standardbedingungen liegen SLAC1, SLAH2 und SLAH3 hauptsächlich als Dimer vor. Auf eine zytosolische Ansäuerung reagiert ausschließlich SLAH3 mit einer signifikanten stöchiometrischen Veränderung und liegt im aktiven Zustand vor Allem als Monomer vor. Der Oligomerisierungsgrad von SLAC1 und SLAH2 bleibt hingegen bei einer zytosolischen Ansäuerung unverändert. Ferner kommt es bei der Interaktion von SLAH3 mit SLAH1 oder SLAH4 zur Formierung eines Heterodimers, welches unbeeinflusst durch den zytosolischen pH bleibt. Im Gegensatz dazu bleiben die elektrisch inaktiven Untereinheiten SLAH1 und SLAH4 monomerisch und assemblieren ganz spezifisch nur mit SLAH3. Die hochauflösende Fluoreszenz-mikroskopie, insbesondere PALM erlaubt es also Heteromerisierungsereignisse und Änderungen im Poylmerisierungsgrad von Membranproteinen wie den SLAC/SLAHs auf molekularer Ebene zu untersuchen und lässt so Rückschlüsse auf physiologische Ereignisse zu., Anion channels of the slow anion channel family (SLAC/SLAH) are general master switches of plant stress responses. In addition a subgroup of channels load the vascular tissue in roots with nitrate and chloride. The activity of the main nitrate and chloride loading anion channel, SLAH3, is controlled by heteromerization with the electro-physiologically silent subunits SLAH1 and SLAH4 or alternatively by cytosolic acidification. Although the crystal structure of a bacterial homologue (HiTehA) of plant SLAC/SLAH anion channels is already known and suggests a trimeric structure, the stoichiometry and the multimerization level of the plant anion channel counterparts are still undiscovered. Fluorescence microscopy encompasses numerous well-established application methods like confocal laser scanning microscopy (CLSM), high resolution techniques like structured illumination microscopy (SIM) and super resolution microscopy represented by single molecule localization microscopy (e.g. dSTORM and PALM) or recently upcoming methods like expansion microscopy (ExM). These different application methods open new fields of insight into the biological organization of proteins, even down to the molecular level. In comparison to faunal studies, very little floral enquiries have been conducted, especially in the super resolution-sector. Single-molecule localization microscopy enables individual molecules to be quantified in the native environment and therefore allows conclusions regarding protein stoichiometry. As protein stoichiometry often involves cellular function of the corresponding protein, we used PALM applications and single molecule counting strategies to analyze the stoichiometric distribution of anion channel complexes. Moreover, in this study, expression patterns of the SLAC/SLAH proteins were investigated and different microscopic applications on plant specific issues could be improved and established. Referring to microscopic applications, we confirmed the polar orientation of PIN proteins via SIM and succeeded in resolving the clustered distribution in the plasma membrane at the cellular pole. Besides we were also able to measure cellwall dimensions of root cross sections from Arabidopsis thaliana seedlings and therefore succeeded in concluding the root architecture, designating the various cell types within the root, comparing them with cellwall thickness and evaluating resolution limits of the SIM microscope. Due to these reasons, this specimen can be recommended as a model structure for resolution analyses, control measurements regarding tissue-intactness after image processing for super-resolution images, or further questions. We turned out to establish two different protocols for ExM-studies in plants. One is based on enzymatic digestion and the other one on denaturation. We were able to label, expand and image whole At-seedlings, root- and leaf segments and thereby improved the resolution 2 3 fold. In this regard we managed to comprehensively depict the intact structure of leaves and roots with impressive penetration depth and extremely low background. We also examined our data and identified tissue-specific changes, discuss problems and possible limits of ExM in plants. The major part of this work was the investigation of SLAC/SLAH proteins. The expression of SLAH2 in roots is mainly located in endodermal and pericycle cells which was observed in various At-SLAH2-YFP mutants. Thus, strengthening the hypothesis, that SLAH2 has a major role in loading the vascular tissue with nitrate. The heterogeneous expression levels of SLAH2 in the meristematic-, elongation- and differentiation zone and moreover the upregulation in areas of lateral root formation also suggests that SLAH2 has an effect on plant growth by regulating nitrate levels. SLAH4 is located in the plasma membrane and FRET FLIM measurements showed a high affinity to SLAH3, validating the two homologues as interaction partners. For PALM-stoichiometry analyses, the plant anion channels were expressed in mammalian COS7-cells, in order to avoid endogenous falsification of the stoichiometries, as well as impractical reasons of PALM imaging in plant tissue. Hence, checking the electrophysiological functionality of mEOS2-SLAC/SLAH constructs via patch-clamp measurements. dSTORM-measurements were used to verify expression levels, correct membrane-association and the distribution of the SLAC/SLAHs in COS7 cells. We determined the multimerization level of SLAC/SLAHs upon cytosolic acidification and monitor stoichiometric changes upon heteromerization of SLAH3 with SLAH1 and SLAH4. On the basis of our data the following valuable new insights into the regulation mechanisms of plant anion channels were revealed: under control conditions, SLAC1, SLAH2 and SLAH3 are mainly depicted as dimers. Upon cytosolic acidification with NaOAc the stoichiometries of SLAC1 and SLAH2 remained unchanged, whereas the amount of dimeric SLAH3 is significantly reduced and shifts to a mainly monomeric distribution. It could also be assessed that SLAH3 interacts with SLAH1 or SLAH4, thereby forming a heterodimer, which is barely separable by acidification. In contrast, for SLAH1 and SLAH4 no affinity was observed. Moreover, the stoichiometries of different SLAH3-mutants indicated a crucial role of the amino acids histidin His330 and His454 in the pH-sensitive regulation of SLAH3. Hence, super-resolution micrsocopy, especially PALM allows the quantification of polymerization- and heteromerization-levels of proteins like the SLAC/SLAH anion-channels on the molecular level and therefore enabling physiological conclusions.
- Published
- 2020