Jiménez, Karem Manuelita Olarte, Camacho , Crisóforo Fabricio Villalobos, Melo, Adriano Sanches, Almeida Neto , Mario, De Marco Júnior, Paulo, Jardim , Lucas Lacerda Caldas Zanini, and Machado, Flávia de Figueiredo
Um dos principais interesses da ecologia e biogeografia é compreender os padrões de gradiente geográfico de biodiversidade e seus processos. O estudo de diferença na composição de espécies nos sítios ou diversidade beta é importante na compreensão do gradiente de biodiversidade. Adicionalmente, os padrões de distribuição de espécies e diversidade de sítios estão conectados e a abordagem deles em conjunto ajuda a entender melhor o gradiente de biodiversidade de algum táxon. Porém, teve poucos estudos macroecológicos sob a abordagem de distribuição e diversidade em conjunto. Por sua vez, a diversidade beta de várias assembleias aquáticas e terrestres tem maior contribuição dos componentes de substituição de espécies nas menores latitudes e maior contribuição de diferença de riqueza nas maiores latitudes. No entanto, se desconhece o padrão desses componentes nas subordens de Carnivora. Assim, no primeiro capítulo deste estudo testamos a hipótese de gradiente latitudinal dos componentes de diversidade beta para Feliformia e Caniformia e sugerimos como possíveis fatores explicativos desses padrões à competição interespecífica, diferente história biogeográfica, conservação de nicho e glaciações do Quaternario. A nível global para as subordens de Carnivora esperamos encontrar maior substituição e diferença de riqueza nas menores e maiores latitudes, respectivamente. Também, esperamos encontrar o mesmo padrão nas regiões do Novo e Velho Mundo, embora, a quantidade de contribuição do componente será segundo a subordem da região. A través de regressões segmentadas, determinamos a relação entre cada componente de diversidade beta e latitude. Registramos que os componentes de diversidade beta de Feliformia e Caniformia seguem padrões geográficos adicionais ao latitudinal. Portanto, a substituição de espécies para ambas subordens não diminui com o aumento de latitude e tem maior contribuição nas regiões montanhosas e rios. A diferença de riqueza de espécies aumenta com a latitude e tem maior contribuição nas regiões temperadas e/ou áridas, como, Polo Ártico para Caniformia e Oriente Médio, Saara e Altiplano para ambas subordens. Além disso, a diferença de riqueza de Feliformia aumenta com a latitude no Hemisfério Sul, sendo maior no Novo do que Velho Mundo, sugerindo que a migração, diversificação e competição, teriam causado maior perda de espécies de Feliformia por Caniformia na América do Sul do que na África. No segundo capítulo com o intuito de compreender o gradiente de diversidade de Carnivora, examinamos os padrões de co-distribuição (i.e. grau de associação ou separação na distribuição espacial de espécies), co-diversidade (i.e. grau de similaridade ou diferença na composição de espécies entre sítios), campo de diversidade (i.e. riqueza nos sítios dentro da área de distribuição de uma espécie) e campo de diversidade cruzado (i.e. riqueza de espécies do clado oposto nos sítios dentro da área de distribuição focal) da ordem, subordens e famílias, sob a abordagem de distribuição e diversidade em conjunto. Usamos matrizes de presença-ausência, gráficos de dispersão e testes de razão de variância. Para Carnivora observamos co-distribuição e co-diversidade positivas e diferentes dos padrões gerados pelo modelo nulo coesivo. Ursidae e Canidae apresentam co-distribuição negativa e co-diversidade positiva, diferentes dos padrões do modelo nulo coesivo. A nível global, no campo de diversidade observamos em média 15,95 espécies dentro das áreas de distribuição geográfica de Carnivora. Além disso, existe maior frequência de sítios com baixa do que alta riqueza de espécies dentro das áreas de distribuição das espécies Carnivora. No campo de diversidade cruzado esperamos menor co-ocorrência de uma espécie Caniformia com espécies Feliformia e vice-versa, pela competição interespecífica entre as subordens de Carnivora. Concordando, observamos mais áreas de distribuição de espécies Caniformia com maior frequência de sítios de baixa riqueza de espécies Feliformia, e vice-versa. One important goal in ecology and biogeography is to understand biodiversity gradient patterns and their processes. Studying compositional difference of species among sites or beta diversity is important to understand this biodiversity gradient. Moreover, distribution ranges of species and species richness of sites are connected patterns. The connected approach of these patterns helps to understand better the biodiversity gradient of some taxon. Nevertheless, there were few macroecological studies that took into account this connected approach of patterns. On the other hand, beta diversity of several terrestrial and aquatic assemblages has more species replacement component in low latitudes and more difference in species richness component in high latitudes. However, we do not know about components of beta diversity patterns for Carnivora suborders, Feliformia and Caniformia. So, we evaluate the latitude gradient hypothesis of beta diversity components of Feliformia and Caniformia for the first chapter. Additionally, we suggest that interspecific competition, difference of historical biogeography, niche conservatism and Quaternary glaciations, might be the factors that explain these beta diversity patterns. We expect more species replacement in low latitudes and more difference in species richness in high latitudes for Carnivora suborders on global scale. We expect the same latitudinal patterns of beta diversity components for these suborders on the regions of the New and Old World, but the amount of each component might depend on the region of suborder. We used piecewise regressions to relate between each beta diversity component and latitude. For Feliformia and Caniformia, beta diversity components follow geographical patterns beyond the latitudinal one. Thus, species replacement does not reduce in high latitudes and this component is higher in mountains and some rivers for both suborders. Difference in species richness increases in high latitudes and this component is higher in temperate and arid regions, like Arctic Pole for Caniformia and Sahara, Middle East and Altiplano for both suborders. Moreover, difference in species richness of Feliformia is higher in high latitudes of New World’s Southern Hemisphere than Old World one, suggesting that migration, diversification and interspecific competition might cause more loss of Feliformia species by Caniformia species in South America than Africa. For the second chapter, to understand the diversity gradients of Carnivora, we examine the patterns of co-distribution (i.e. degree of association or segregation in the distribution ranges of species), co-diversity (i.e. degree of similarity or differentiation of species composition among localities), diversity field (i.e. set of species richness values among sites within the distribution range of a given species) and cross diversity field (i.e. set of richness values of the opposite clade among sites within the distribution range of a given species) of Carnivora, suborders and families. We evaluated these patterns through the connected approach of distribution ranges of species and species richness of sites. We used presence-absence matrices, scatter plots as range-diversity plots and variance-ratio tests. For Carnivora, positive co-distribution and positive co-diversity are found and they are different from cohesive null model patterns. Negative co-distribution and positive co-diversity are found for Ursidae and Canidae, in addition these observed patterns are different from cohesive null model patterns. We find 15,95 species as mean within distribution ranges for Carnivora. Additionally, there are more sites with low richness than high richness within distribution ranges for Carnivora. Because of interspecific competition of the Carnivora suborders, we expect low co-occurrences between a given Caniformia species and Feliformia species or vice-versa for cross diversity fields. Matching our expectation, we find more sites with low richness of Feliformia species within distribution ranges of Caniformia species and vice-versa. Outro