1. Evaluating the use of Pareto Efficiency to Optimize Non-Functional Requirements Satisfaction in i* Modeling
- Author
-
Sven Casteleyn, José Alfonso Aguilar, Jose Zubcoff, Irene Garrigós, Jose-Norberto Mazón, Universidad de Alicante. Departamento de Ciencias del Mar y Biología Aplicada, Universidad de Alicante. Departamento de Lenguajes y Sistemas Informáticos, and Web and Knowledge (WaKe)
- Subjects
medicine.medical_specialty ,Non-functional requirement ,General Computer Science ,Computer science ,0102 computer and information sciences ,02 engineering and technology ,Web engineering ,Goal-oriented requirements ,01 natural sciences ,Estadística e Investigación Operativa ,0202 electrical engineering, electronic engineering, information engineering ,medicine ,Web application ,Electrical and Electronic Engineering ,Requirements analysis ,NFRs Optimization ,Web Engineering ,business.industry ,Pareto principle ,020207 software engineering ,Functional requirement ,Pareto efficiency ,Reliability engineering ,i ,010201 computation theory & mathematics ,Lenguajes y Sistemas Informáticos ,Pareto Efficiency ,business ,Web modeling - Abstract
Due to the large, heterogeneous audience of Web applications, and its rapidly changing expectations, holistic requirement analysis approaches are crucial to ensure the success of Web engineering projects. To increase the quality of resulting Web applications, non-functional requirements (NFRs) must be considered. Satisfying them is a non-trivial task that depends on making decisions about which functional requirements (FRs) to implement, and how to prioritize the NFRs. A satisfactory solution is a trade-off, where competing NFRs must be balanced. In this paper, we outline how the Pareto efficiency can complement a goal-oriented requirement analysis modelling to evaluate and select optimal configurations of requirements for a Web application, while NFRs are balanced and maximized according to a priority list. We hereby focus on an empirical evaluation to verify whether our Pareto method improves the accuracy of design decisions during the requirements analysis phase, and/or if it reduces the time needed by designers. Este trabajo ha sido parcialmente financiado por los siguientes proyectos: Open.Mind (GV/2014/098) de la Generalitat Valenciana; PROFAPI2012/002 y PROFAPI2013/002 de la Universidad Autónoma de Sinaloa, México y MANTRA (GRE09-17) de la Universidad de Alicante.
- Published
- 2016