RESUMEN En los últimos 10 años, los científicos han logrado simular la evolución natural en sus laboratorios. Este proceso se denomina evolución dirigida, e inicia con un gen o secuencia diana. A partir de esta secuencia del gen se generan bibliotecas de genes mutantes utilizando mutagénesis aleatoria mediante la técnica de PCR propensa a error: epPCR. Las librerías generadas son sometidas a procesos de selección o tamizaje para identificar las proteínas ganadoras de una función o funciones en particular, con respecto a la proteína de la cual se originaron. Otra manera de identificar los productos generados en este largo proceso evolutivo es por medio de los análisis de coevolución, los cuales son de mucha ayuda cuando no existen procesos de selección y el método de tamizaje disponible para encontrar mutantes es muy lento, limitando el número de mutantes a muestrear para obtener una variante mejorada. En la coevolución, se analizan los patrones de variación de residuos que forman un contacto entre sí, porque dichas mutaciones cambian el empaquetamiento de la proteína y pueden provocar modificaciones de función, estabilidad, selectividad, incluso cuando están lejos del sitio activo. La presión de selección a la que son sometidas las proteínas hace que dos residuos que se encuentran en contacto varíen de forma correlacionada cuando son importantes para la función. Por lo anterior, la evolución dirigida aunada a la coevolución son unas de las técnicas más exitosas de la biología molecular y de frontera que nos permiten explorar y mejorar las funciones en una gran cantidad de proteínas de interés médico, biotecnológico, industrial, etc, en un tiempo muy corto. ABSTRACT In the last 10 years, scientists have been able to simulate natural evolution in laboratories through the process of directed evolution, which begins with a target gene or sequence for which a mutant gene library is generated using random mutagenesis. After producing such libraries through the technique of error-prone PCR (epPCR), they are subjected to selection or screening for the identification of improved proteins towards a particular function or functions when compared to the protein that originated them. Another methodology to harness the products of the long evolutionary history is the coevolution analysis, which is very helpful when no selection strategy is feasible and the screening method available to sift mutants is very slow, limiting the number of mutants that can be sampled to find an improved variant. In the coevolution analysis, the variation patterns of residues in contact are analyzed, because mutations in these residues change the residue packing in the protein, thus, producing modifications in function, stability, selectivity, even when residue substitution is far from the active site. The selection acting on proteins force two residues in contact to vary in a correlated way when they are important for function. Therefore, directed evolution coupled with coevolution are some of the most successful techniques in molecular and frontier biology that allow us to explore and improve the functions of a large number of proteins of medical, biotechnological, industrial interest, etc., in a very short time., {"references":["Brinda K V., Vishveshwara S. Oligomeric protein structure networks: Insights into protein-protein interactions. BMC Bioinformatics 2005;6. https://doi.org/10.1186/1471-2105-6-296.","Mei G, Di Venere A, Rosato N, Finazzi-Agrò A. The importance of being dimeric. FEBS J 2005;272:16–27. https://doi.org/10.1111/j.1432-1033.2004.04407.x.","Mallik S, Kundu S. Topology and Oligomerization of Mono- and Oligomeric Proteins Regulate Their Half-Lives in the Cell. Structure 2018;26:869-878.e3. https://doi.org/10.1016/j.str.2018.04.015.","Kumari N, Yadav S. Modulation of protein oligomerization: An overview. Prog Biophys Mol Biol 2019;149:99–113. https://doi.org/10.1016/j.pbiomolbio.2019.03.003.","Roche JV, Törnroth-Horsefield S. Aquaporin protein-protein interactions. Int J Mol Sci 2017;18:1–23. https://doi.org/10.3390/ijms18112255.","Watson A, Phipps MJS, Clark HW, Skylaris CK, Madsen J. Surfactant proteins A and D: Trimerized innate immunity proteins with an affinity for viral fusion proteins. J Innate Immun 2018;11:13–28. https://doi.org/10.1159/000492974.","Brender JR, Zhang Y. Predicting the Effect of Mutations on Protein-Protein Binding Interactions through Structure-Based Interface Profiles. PLoS Comput Biol 2015;11:1–25. https://doi.org/10.1371/journal.pcbi.1004494.","Sievers F, Higgins DG. Clustal Omega. Curr Protoc Bioinforma 2014;2014:3.13.1-3.13.16. https://doi.org/10.1002/0471250953.bi0313s4.","Kent WJ. BLAT —The BLAST -Like Alignment Tool . Genome Res 2002;12:656–64. https://doi.org/10.1101/gr.229202.","Notredame C, Higgins DG, Heringa J. T-coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 2000;302:205–17. https://doi.org/10.1006/jmbi.2000.4042.","Koonin E V. Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet 2005;39:309–38. https://doi.org/10.1146/annurev.genet.39.073003.114725.","Imhof M, Schlötterer C. Fitness effects of advantageous mutations in evolving Escherichia coli populations. Proc Natl Acad Sci U S A 2001;98:1113–7. https://doi.org/10.1073/pnas.98.3.1113.","Cadwell RC, Joyce GF. Manual Supplement III1 | 11 Mutagenic PCR. Genome Res 1994:3–8.","Stemmer WP. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci [Internet]. 1994 Oct 25;91(22):10747–51. Available from: https://doi.org/10.1073/pnas.91.22.10747.","Mikhailovsky G, Gordon R. Shuffling type of biological evolution based on horizontal gene transfer and the biosphere gene pool hypothesis. BioSystems 2020;193–194:104131. https://doi.org/10.1016/j.biosystems.2020.104131.","Feng H, Wang HY, Zhao HY. Novel random mutagenesis method for directed evolution. Methods Mol Biol 2017;1498:483–90. https://doi.org/10.1007/978-1-4939-6472-7_32.","Behrendorff JBYH, Johnston WA, Gillam EMJ. Chapter 12 Restriction Enzyme-Mediated DNA Family Shuffl ing 2014;1179:175–87. https://doi.org/10.1007/978-1-4939-1053-3.","Yang F, Moss LG, Phillips GN. The Molecular Structure of Green Fluorescent Protein. Nat Biotechnol 1996;14:1246–51. https://doi.org/10.1038/nbt1096-1246.","Kuchner O, Arnold FH. Directed evolution of enzyme catalysts. Trends Biotechnol 1997;15:523–30. https://doi.org/10.1016/S0167-7799(97)01138-4.","Lemire S, Yehl KM, Lu TK. Phage-Based Applications in Synthetic Biology. Annu Rev Virol 2018;5:453–76. https://doi.org/10.1146/annurev-virology-092917-043544.","Løset GÅ, Sandlie I. Next generation phage display by use of pVII and pIX as display scaffolds. Methods 2012;58:40–6. https://doi.org/10.1016/j.ymeth.2012.07.005.","Meyer MM, Silberg JJ, Voigt CA, Endelman JB, Mayo SL, Wang Z-G, et al. Library analysis of SCHEMA-guided protein recombination. Protein Sci 2003;12:1686–93. https://doi.org/10.1110/ps.0306603.","Romero PA, Arnold FH. Exploring protein fitness landscapes by directed evolution. Nat Rev Mol Cell Biol 2009;10:866–76. https://doi.org/10.1038/nrm2805.","Smith MA, Arnold FH. Noncontiguous SCHEMA protein recombination. Methods Mol Biol 2014;1179:345–52. https://doi.org/10.1007/978-1-4939-1053-3_23.","Smith GP. Phage Display: Simple Evolution in a Petri Dish (Nobel Lecture). Angew Chemie - Int Ed 2019;58:14428–37. https://doi.org/10.1002/anie.201908308.","Winter G. Harnessing Evolution to Make Medicines (Nobel Lecture). Angew Chemie - Int Ed 2019;58:14438–45. https://doi.org/10.1002/anie.201909343.","Petrenko VA. Landscape phage: Evolution from phage display to nanobiotechnology. Viruses 2018;10:1–17. https://doi.org/10.3390/v10060311.","Ledsgaard L, Kilstrup M, Karatt-Vellatt A, McCafferty J, Laustsen AH. Basics of antibody phage display technology. Toxins (Basel) 2018;10. https://doi.org/10.3390/toxins10060236.","Wahlfors J, Loimas S, Pasanen T, Hakkarainen T. Green fluorescent protein (GFP) fusion constructs in gene therapy research. Histochem Cell Biol 2001;115:59–65. https://doi.org/10.1007/s004180000219.","Tan Y, Tian T, Liu W, Zhu Z, J. Yang C. Advance in phage display technology for bioanalysis. Biotechnol J 2016;11:732–45. https://doi.org/10.1002/biot.201500458.","Quintero-Hernández V, Juárez-González VR, Ortíz-León M, Sánchez R, Possani LD, Becerril B. The change of the scFv into the Fab format improves the stability and in vivo toxin neutralization capacity of recombinant antibodies. Mol Immunol 2007;44:1307–15. https://doi.org/10.1016/j.molimm.2006.05.009.","Juárez-González VR, Riaño-Umbarila L, Quintero-Hernández V, Olamendi-Portugal T, Ortiz-León M, Ortíz E, et al. Directed evolution, phage display and combination of evolved mutants: A strategy to recover the neutralization properties of the scFv version of BCF2 a neutralizing monoclonal antibody specific to scorpion toxin Cn2. J Mol Biol 2005;346:1287–97. https://doi.org/10.1016/j.jmb.2004.12.060.","Johannes TW, Zhao H. Directed evolution of enzymes and biosynthetic pathways. Curr Opin Microbiol 2006;9:261–7. https://doi.org/10.1016/j.mib.2006.03.003.","Kumar A, Singh S. Directed evolution: Tailoring biocatalysts for industrial applications. Crit Rev Biotechnol 2013;33:365–78. https://doi.org/10.3109/07388551.2012.716810.","Porter JL, Rusli RA, Ollis DL. Directed Evolution of Enzymes for Industrial Biocatalysis. ChemBioChem 2016;17:197–203. https://doi.org/10.1002/cbic.201500280.","Saab-Rincón G, Juárez VR, Osuna J, Sánchez F, Soberón X. Different strategies to recover the activity of monomeric triosephosphate isomerase by directed evolution. Protein Eng 2001;14:149–55. https://doi.org/10.1093/protein/14.3.149.","Salinas VH, Ranganathan R. Coevolution-based inference of amino acid interactions underlying protein function. Elife 2018;7. https://doi.org/10.7554/eLife.34300.","Weigt M, White RA, Szurmant H, Hoch JA, Hwa T. Identification of direct residue contacts in protein-protein interaction by message passing. Proc Natl Acad Sci 2009;106:67–72. https://doi.org/10.1073/pnas.0805923106.","Morcos F, Pagnani A, Lunt B, Bertolino A, Marks DS, Sander C, et al. Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proc Natl Acad Sci 2011;108:E1293–301. https://doi.org/10.1073/pnas.1111471108.","Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021;596:583–9. https://doi.org/10.1038/s41586-021-03819-2.","Arreola-Barroso RA, Llopiz A, Olvera L, Saab-Rincón G. Modulating Glycoside Hydrolase Activity between Hydrolysis and Transfer Reactions Using an Evolutionary Approach. Molecules 2021;26:6586. https://doi.org/10.3390/molecules26216586."]}