1. Disease Progression Score Estimation From Multimodal Imaging and MicroRNA Data Using Supervised Variational Autoencoders
- Author
-
Virgilio Kmetzsch, Emmanuelle Becker, Dario Saracino, Daisy Rinaldi, Agnes Camuzat, Isabelle Le Ber, Olivier Colliot, Algorithms, models and methods for images and signals of the human brain (ARAMIS), Sorbonne Université (SU)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut du Cerveau = Paris Brain Institute (ICM), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut du Cerveau = Paris Brain Institute (ICM), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Dynamics, Logics and Inference for biological Systems and Sequences (Dyliss), Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-GESTION DES DONNÉES ET DE LA CONNAISSANCE (IRISA-D7), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), The research leading to these results has received funding from the French government under management of Agence Nationale de la Recherche, references ANR-19-P3IA-0001 (PRAIRIE 3IA Institute), ANR-10-IAIHU-06, project PREV-DEMALS (grant number ANR-14-CE15-0016-07), and from the Inria Project Lab Program (project Neuromarkers)., ANR-19-P3IA-0001,PRAIRIE,PaRis Artificial Intelligence Research InstitutE(2019), ANR-14-CE15-0016,PREV-DEMALS,Prédire pour prévenir les démences frontotemporales (DFT) et la sclérose latérale amyotrophique (SLA)(2014), Colliot, Olivier, PaRis Artificial Intelligence Research InstitutE - - PRAIRIE2019 - ANR-19-P3IA-0001 - P3IA - VALID, and Appel à projets générique - Prédire pour prévenir les démences frontotemporales (DFT) et la sclérose latérale amyotrophique (SLA) - - PREV-DEMALS2014 - ANR-14-CE15-0016 - Appel à projets générique - VALID
- Subjects
[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology ,[SDV.NEU.NB] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology ,[INFO.INFO-IM] Computer Science [cs]/Medical Imaging ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,Deep learning ,MicroRNA ,Neuroimaging ,Health Informatics ,Variational autoencoder ,Neurodegenerative disease ,Disease progression score ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,Computer Science Applications ,[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,[SDV.IB.IMA] Life Sciences [q-bio]/Bioengineering/Imaging ,Multimodal data ,[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV] ,Health Information Management ,[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] ,[INFO.INFO-IM]Computer Science [cs]/Medical Imaging ,Electrical and Electronic Engineering ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing - Abstract
International audience; Frontotemporal dementia and amyotrophic lateral sclerosis are rare neurodegenerative diseases with no effective treatment. The development of biomarkers allowing an accurate assessment of disease progression is crucial for evaluating new therapies. Concretely, neuroimaging and transcriptomic (microRNA) data have been shown useful in tracking their progression. However, no single biomarker can accurately measure progression in these complex diseases. Additionally, large samples are not available for such rare disorders. It is thus essential to develop methods that can model disease progression by combining multiple biomarkers from small samples. In this paper, we propose a new framework for computing a disease progression score (DPS) from cross-sectional multimodal data. Specifically, we introduce a supervised multimodal variational autoencoder that can infer a meaningful latent space, where latent representations are placed along a disease trajectory. A score is computed by orthogonal projections onto this path. We evaluate our framework with multiple synthetic datasets and with a real dataset containing 14 patients, 40 presymptomatic genetic mutation carriers and 37 controls from the PREV-DEMALS study. There is no ground truth for the DPS in real-world scenarios, therefore we use the area under the ROC curve (AUC) as a proxy metric. Results with the synthetic datasets support this choice, since the higher the AUC, the more accurate the predicted simulated DPS. Experiments with the real dataset demonstrate better performance in comparison with stateof-the-art approaches. The proposed framework thus leverages cross-sectional multimodal datasets with small sample sizes to objectively measure disease progression, with potential application in clinical trials.
- Published
- 2022