1. Atomic-Scale Structure and Stress Release Mechanism in Core–Shell Nanoparticles
- Author
-
Michael Nathanson, Alan Pryor, Hendrik Heinz, Krishan Kanhaiya, and Jianwei Miao
- Subjects
Diffraction ,Materials science ,General Engineering ,General Physics and Astronomy ,Nanoparticle ,Nanotechnology ,02 engineering and technology ,Core shell nanoparticles ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Atomic units ,0104 chemical sciences ,Catalysis ,Stress (mechanics) ,Molecular dynamics ,Atomic resolution ,General Materials Science ,0210 nano-technology - Abstract
Core-shell nanoparticles find applications in catalysts, sensors, and theranostics. The full internal 3D atomic structure, however, cannot be resolved by current imaging and diffraction techniques. We analyzed the atomic positions and stress-release mechanism in a cubic Au-Pd core-shell nanoparticle in approximately 1000 times higher resolution than current experimental techniques using large-scale molecular dynamics simulation to overcome these limitations. The core-shell nanocube of 73 nm size was modeled similarly to solution synthesis by random epitaxial deposition of a 4 nm thick shell of Pd atoms onto a Au core of 65 nm side length using reliable interatomic potentials. The internal structure reveals specific deformations and stress relaxation mechanisms that are caused by the +4.8% lattice mismatch of gold relative to palladium and differential confinement of extended particle facets, edges, and corners by one, two, or three Au-Pd interfaces, respectively. The three-dimensional lattice strain causes long-range, arc-like bending of atomic rows along the faces and edges of the particle, especially near the Au-Pd interface, a bulging deformation of the Pd shell, and stacking faults in the Pd shell at the corners of the particle. The strain pattern and mechanism of stress release were further characterized by profiles of the atomic layer spacing in the principal crystallographic directions. Accordingly, strain in the Pd shell is several times larger in the extended facets than near the edges and corners of the nanoparticle, which likely affects adsorption, optical, and electrochemical properties. The findings are consistent with available experimental data, including 3D reconstructions of the same cubic nanoparticle by coherent diffractive imaging (CDI) and may be verified by more powerful experimental techniques in the future. The stress release mechanisms are representative for cubic core-shell nanoparticles with fcc structure and can be explored for different shapes by the same methods.
- Published
- 2018
- Full Text
- View/download PDF