1. Evaluation of Sentinel-1 & 2 time series for predicting wheat and rapeseed phenological stages
- Author
-
Jacques Baudry, Audrey Mercier, Vincent Le Roux, Julie Betbeder, Jérôme Lacoux, Laurence Hubert-Moy, Fabien Spicher, David Roger, Signalisation, radiobiologie et cancer, Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Littoral, Environnement, Télédétection, Géomatique (LETG - Rennes), Littoral, Environnement, Télédétection, Géomatique UMR 6554 (LETG), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-Université d'Angers (UA)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Brest (UBO)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Géographie et d'Aménagement Régional de l'Université de Nantes (IGARUN), Université de Nantes (UN)-Université de Nantes (UN)-Université de Caen Normandie (UNICAEN), Université de Nantes (UN)-Université de Nantes (UN), Biodiversité agroécologie et aménagement du paysage (UMR BAGAP), AGROCAMPUS OUEST-Ecole supérieure d'Agricultures d'Angers (ESA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Ecologie et Dynamique des Systèmes Anthropisés - UMR CNRS 7058 (EDYSAN), Centre National de la Recherche Scientifique (CNRS)-Université de Picardie Jules Verne (UPJV), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Ecole supérieure d'Agricultures d'Angers (ESA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Rapeseed ,F40 - Écologie végétale ,010504 meteorology & atmospheric sciences ,Télédétection ,Triticum aestivum ,0211 other engineering and technologies ,Context (language use) ,02 engineering and technology ,01 natural sciences ,Normalized Difference Vegetation Index ,Crop ,Computers in Earth Sciences ,Leaf area index ,Engineering (miscellaneous) ,ComputingMilieux_MISCELLANEOUS ,021101 geological & geomatics engineering ,0105 earth and related environmental sciences ,2. Zero hunger ,Phenology ,Brassica napus ,food and beverages ,[SHS.GEO]Humanities and Social Sciences/Geography ,Spectral bands ,Vegetation ,15. Life on land ,technique de prévision ,Atomic and Molecular Physics, and Optics ,Computer Science Applications ,Agronomy ,13. Climate action ,[SDE]Environmental Sciences ,Environmental science ,U30 - Méthodes de recherche ,Phénologie - Abstract
In the global context of population growth and climate change, monitoring crops is necessary to sustain agriculture and conserve natural resources. While many studies have demonstrated the ability of optical and SAR remotely sensed data to estimate crop parameters, these data have not been compared or combined to predict crop phenological stages. Despite the high sensitivity of SAR polarimetric data to crop phenological stages, no study has used high temporal resolution data. The freely available SAR Sentinel-1 (S-1) and optical Sentinel-2 (S-2) time series provide a unique opportunity to monitor crop phenology at a high spatial resolution on a weekly basis. The objective of this study was to evaluate the potential of S-1 data alone, S-2 data alone, and their combined use to predict wheat and rapeseed phenological stages. We first analyzed temporal profiles of spectral bands, vegetation indices and leaf area index (LAI) derived from S-2 data, and backscattering coefficients and polarimetric indicators derived from S-1 data. Then, an incremental procedure was used to estimate the contribution of S-1 and S-2 features to the classification of principal and secondary phenological stages of wheat and rapeseed. Results for both crops showed that the classification obtained with combined S-1 & 2 data (mean kappa = 0.53–0.82 and 0.74–0.92 for wheat and rapeseed, respectively) was more accurate than those obtained with S-2 data alone (mean kappa = 0.54–0.75 and 0.67–0.86 for wheat and rapeseed, respectively) or S-1 data alone (mean kappa = 0.48–0.61 and 0.61–0.64 for wheat and rapeseed, respectively). Combining S-1 & 2 data allowed better identification of the beginning and end of tillering for wheat and the beginning and end of ripening for rapeseed. Among S-2 features, the most important were LAI for wheat and the NDVI for rapeseed. For both crops, the S2REP index was one of the most important vegetation indices, while MCARI was less important. For S-1 features, results highlighted the large contribution of the backscatter ratio (σ◦VH:σ◦VV) and the value of using polarimetric indicators (Shannon entropy and span) to monitor rapeseed and wheat phenology. The main novelties of this work are the use of S-1 polarimetric indicators to identify phenological stages of wheat and rapeseed and the mapping of wheat and rapeseed secondary phenological stages using remotely sensed data.
- Published
- 2020
- Full Text
- View/download PDF